
pjs64

Tools
Scientifically Approved

Resource Saving Minimalism



pjs64

Blog-roller · No-Kite-Surfer · Org-mode Rookie
pjs64.wordpress.com · 2022 Somewhere

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
https://pjs64.wordpress.com


CONTENTS 3

Contents

I Org to Website 5

1. Intro 5

2. Test, One, Two 7

3. Org Publish 8

4. Example Selection 10
4.1. Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5. Publishing Experiments 13
5.1. Producing the Laboratory Files . . . . . . . . . . . . . . 13
5.2. Analyze It . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3. Resulting Configuration . . . . . . . . . . . . . . . . . . 17

6. Website Template 18

7. Org HTML Export 20
7.1. Aside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2. Headline Levels . . . . . . . . . . . . . . . . . . . . . . . 23

8. Org CSS Construction 25

9. Glue HTML and Extract Images 28

10.Netlify Drop 29

11.Test, One, two, three 30
11.1. Expanded Configuration . . . . . . . . . . . . . . . . . . 31
11.2. Bibliography and PDF . . . . . . . . . . . . . . . . . . . 34

11.2.1. Compiling Latex . . . . . . . . . . . . . . . . . . 35
11.2.2. BibTeX HTML . . . . . . . . . . . . . . . . . . . 36
11.2.3. Symlink Publishing Adaption . . . . . . . . . . . 37

11.3. Glue HTML . . . . . . . . . . . . . . . . . . . . . . . . . 39



4 CONTENTS

11.3.1. Paths and Files . . . . . . . . . . . . . . . . . . . 39
11.3.2. Select Updated Pages . . . . . . . . . . . . . . . . 40
11.3.3. Page Assembly . . . . . . . . . . . . . . . . . . . 40

11.4. Image Handling . . . . . . . . . . . . . . . . . . . . . . . 41
11.4.1. Change Relative Image Links . . . . . . . . . . . 41
11.4.2. Collect Media . . . . . . . . . . . . . . . . . . . . 43
11.4.3. Hidden Agenda for Images . . . . . . . . . . . . . 44

12.What’s more 46
12.1. Publishing Hooks . . . . . . . . . . . . . . . . . . . . . . 47
12.2. Index Toc Tag Category Bibentry Link-List . . . . . . . 48

12.2.1. BibTeX . . . . . . . . . . . . . . . . . . . . . . . 49
12.2.2. Links and Indices . . . . . . . . . . . . . . . . . . 50
12.2.3. XML Tools for Attribution Retrieval . . . . . . . 52

12.3. Select Files and Content . . . . . . . . . . . . . . . . . . 58
12.4. Template Development . . . . . . . . . . . . . . . . . . . 62
12.5. Netlify Alternatives . . . . . . . . . . . . . . . . . . . . . 64
12.6. Weaving Amaya . . . . . . . . . . . . . . . . . . . . . . . 65

13.Appendix 69
13.1. Ogbe’s Website Construction . . . . . . . . . . . . . . . 69

13.1.1. Publishing Action . . . . . . . . . . . . . . . . . . 71
13.1.2. Head . . . . . . . . . . . . . . . . . . . . . . . . . 72
13.1.3. Mathjax . . . . . . . . . . . . . . . . . . . . . . . 73
13.1.4. Pre- and Postamble → Header and Footer . . . . 74
13.1.5. Home Up . . . . . . . . . . . . . . . . . . . . . . 75
13.1.6. Footnote . . . . . . . . . . . . . . . . . . . . . . . 75
13.1.7. Pre- and Post-Processors . . . . . . . . . . . . . . 76
13.1.8. Options, Drawer . . . . . . . . . . . . . . . . . . 77
13.1.9. Sitemap . . . . . . . . . . . . . . . . . . . . . . . 77
13.1.10.RSS . . . . . . . . . . . . . . . . . . . . . . . . . 78



5

Part I

Org to Website
1 Intro

Just another org to hugo jekyll whatever guide? Guess again. But
you also may read first. Exe-cute-if some-hurry: How to utilize org
publish for a modern Website layout, including template and integrated
css production; with a helping hand from R.

The motivation for this work was to reproduce and exercise the pub-
lishing features of org mode. The objective turned from information
architecture into taming Web technology for public interests.

�
This is a volatile expansion of [20]. You may post comments
there and refer to the volatile expansion of 2022-08-02. I
tried to avoid repetition, unless I turned inline links to bib-
liography citations.

The tangible result of this expansion is still a static web site without
javascript,1 based on html5 and something that might be called
css3.2 The deployment is aimed at content delivery network, cdn,
hosting of static sites. And now it is accessible by an url with the
restriction of volatility; see Section 11 for the volatile connotation.

It is still hard to sort out all the detours and excursions; and to
justify temporary simplifications. In the long version I rather report
on some of the many aspects of Web technology approaches instead of
a clean how-to with a straight line of conduct. I consider the result
as my own lookup source for further work on free software solutions,

1At first I only aim at switching off all javascript which is rendered superfluous
with new ccs mechanics. Afterwards, but still not here, javascript and html api’s
are considered to be reinforced again.

2Due to CSS: The Definite Guide [11], p.2, “it’s hard to speak of a single ‘css3
specification.’ There isn’t any such thing, nor can there be.”

https://orgmode.org/manual/Publishing.html


6 1 INTRO

beginning with a free publishing suite. And I publish it because sharing
is the new having.

The research started with Sebastian Rose’s worg entry Publishing
Org-Mode Files to HTML at orgmode.org [22] and a comparison to
Dennis Ogbe’s approach discussed in the blog entry Blogging using ex-
clusively org-mode at ogbe.net [16]. A lot of additional insight is from
the doc strings of the publishing functions, which are mainly part of

ox-publish.el but also spread all over the individual export libraries,
especially ox-html.el. There are

new hints from Migrating from Jekyll to org-mode and GitHub
Actions [18] at duncan.codes and

reasons to revisit two blogs of Yuan Fu about exclusively using
org mode for blogs [6], [5] at casouri.github.io.

The exercise quickly raised a lot of questions about content man-
agement and information architecture. These questions were the basis
of the hypothesis that org mode has everything to combine into the
tasks of a cms. Collaboration and system management, imho, should
be outsourced to special software like trello and git.

For me even the “simple” project in the org Manual offers too
many variations to act as an introductory showcase for org publishing.
Nevertheless it’s the only point of entry, so be prepared to get confused.
As an anti confusion agent I offer a sketch of my “proceedings.”

Section 2 is about what I expected from org publish and how I
constructed some rookie Web pages

The next bulk of sections explains and expands the corresponding
sections in the carpenter’s Web site assimilation [20], while Section 9
is a commented link to the untouched section of the short version at
pjs64.wordpress.com. In contrast to [20] the loop mode for Sections
3 to 7 is extended to and includes the deployment. And the order of
the items is not an issue anymore; it’s just kept for reference to the
condensed wordpress preview.

Section 3 introduces to a coarse understanding of the org publish
concept.
Section 4 shows how I adapted my rookie expectations by choos-
ing another example set.

https://orgmode.org/worg/org-tutorials/org-publish-html-tutorial.html
https://ogbe.net/blog/blogging_with_org.html
https://orgmode.org/manual/Simple-example.html


7

Section 5 introduces an experimental set of org publish results
in order to categorize the publishing configurations.
Section 6 extracts the “lowest common denominator” for Web site
design derived from the amazing number of four Web pages.
Section 7 brings up some general and html org export options
and their defaults.
Section 8 shows the potential of org mode to offer automatic
Web site construction demonstrated by css organization.
Section 9 contains some comments on [20]’s gluing section.
Section 10 relates a teaser for using netlify deployments to my
ideas of a publication model.

Then I’m returning to my test-1-2 rookie Web site and apply the
new skills of a static template constructor to generate a differently
structured Web site. It was built to get the article you’re looking at
into a the next step on the way to a proper Web site and provide another
workflow framework.

Section 11 rearranges the steps in [20]’s gluing section to put some
of the What’s more topics of [20] into action: cms basics and a
bibliography workflow.
Section 12 expands the What’s more topics of [20] – elisp, doc-
ument information, structure, templates – and concludes with
similarities to the Amaya project.
The Appendix, Section 13, analyses Ogbe’s Website construction.

2 Test, One, Two

I produced my first basic set of test files from the attempt to develop
plain org html exports which look very sober; see Figure 1.

The contents are from the capture chapter of the org mode Man-
ual. The pages show some structural elements of Web pages: content,
header, navigation, topics. Obviously they don’t look like a word-
press blog. They lack Web site structure, layout and real design: a
site header, navigation slots, some additional information in optional
right or left columns or boxes, a footer.

Usually that’s one of the tasks of a well developed content manage-
ment system. My hypothesis from the Intro: org mode offers every

https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org43c580d
https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org43c580d
https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org4a5672d
https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org4a5672d
https://orgmode.org/manual/Capture-and-Attachments.html


8 3 ORG PUBLISH

Fig. 1 – Some org html exports, decorated with links between horizontal
lines or a table of contents in order to look roughly like a Website.

feature to act as a cms. And I thought if org’s publishing procedure
should do anything useful it should at least be able to convert files into
a complete Web site; see the commentary in ox-publish.el, cited
below in Section 3. But Web sites reflect a site structure not a page
collection.

By employing some of org’s publishing and export features I began
to differentiate expectation from coded methods. A coarse introduction
to org publish should set the scene for the first building brick.

3 Org Publish

The commentary of ox-publish.el tells us that “this program
allows configurable publishing of related sets of org mode files as a
complete website.” It can

publish all one’s org files to a given export back-end
upload html, images, attachments and other files to a web server
exclude selected private pages from publishing
publish a clickable sitemap of pages
manage local timestamps for publishing only changed files
accept plugin functions to extend the range of publishable content



9

The statement “publishing is configured almost entirely through set-
ting the value of one variable, called org-publish-project-alist”
leaves the user with the uncertainty of “almost.” First of all pub-
lishing means org mode publishing. And the corresponding con-
figuration implies an alist of this restricted publishing model, only.
But it handles dependencies to the whole org mode empire. The
org-publish-project-alist is not a value, it’s an association list,
and it can be a pretty large one; see Ogbe’s blog entry cited in the
Intro. The manual Section Project Alist offers two syntactic patterns:
the pattern of the lines one and two, and the pattern of line three:� �
("postings" :property1 value1 :property2 value2)
("static-files" :property3 value3 :property4 value4)
("web-site" :components ("postings" "static-files"))� �

The third line defines web-site as a set of the sub-projects
postings and static-files. The sub-projects are called components;
they combine files requiring the same publishing procedures. When we
publish such a meta-project, all the components are also published, in
the given order. One of the publishing commands for the code above is

M-x org-publish-project RET web-site RET

A project consisting only of the first two lines’ syntax is shown in
the Manual’s Section Example: simple publishing configuration. This
example publishes a set of org files to the ~/public_html directory
on the local machine. But it uses a pain-in-the-ass attribute: simple.
There’s nothing simple about this example, it’s just restricted to the
first syntax model and it’s kind of short. Even in the simple project we
have to be aware of all export and publish switches. imho that’s very
far from simple. The simple example is� �
(setq org-publish-project-alist

’(("org"
:base-directory "~/org/"
:publishing-function org-html-publish-to-html
:publishing-directory "~/public_html"
:section-numbers nil
:with-toc nil
:html-head "<link rel=\"stylesheet\"

href=\"../other/mystyle.css\"

https://ogbe.net/blog/blogging_with_org.html
https://orgmode.org/manual/Project-alist.html
https://orgmode.org/manual/Simple-example.html


10 4 EXAMPLE SELECTION

type=\"text/css\"/>")))� �
The mandatory properties are
:base-directory – the folder containing publishing sources. All
files meeting the criteria defined by the properties described in
the Manual’s Section Selecting Files are published according to
Section Publishing Action.
:publishing-directory – target folder or tramp syntax for
published files.

Another necessary property is the :publishing-function, but it
has a default, so it might not be called mandatory3

:publishing-function is, by default, set to
org-html-publish-to-html

For the other three properties I offer a very short insight into con-
figurations of the default html export:

:section-numbers nil – switches off the numbers for the head-
ings
:with-toc nil – switches off the table of contents, which would
be put beneath the title; title is the first entry of the export
<body> if :with-title is switched on. Without title the table of
contents is first.
:html-head – the usage of :html-head is restricted to a part
of the export <head>. The whole <head> consists of a date
comment, one constructor of <meta> elements, another big one
for head elements like <style>, and of mathjax info. The big
one is addressed by :html-head; see the org-html-template in

ox-html.el for the whole composition, sketched in Section 5.2.

4 Example Selection

That was too much information. But at least I can figure out
that for my purpose the html export collection about org mode
capture, Figure 1, will miss the point. With these exports I don’t

3Another mandatory one is :base-extension which defaults to org files; see
Selecting Files in the Manual. Expansion on this issue would lead directly to a wide
field of selective opportunities in the org file construction or access to file parts.

https://orgmode.org/manual/Selecting-files.html
https://orgmode.org/manual/Publishing-action.html
https://www.gnu.org/software/tramp/#Quick-Start-Guide
https://orgmode.org/manual/Selecting-files.html


11

get a clue about Web sites. In the Example Selection of the short
version at pjs64.wordpress.com I begin with the German html In-
tro (→ google Translation), accompanied by a showcase (→ gooTrl),
at wiki.selfhtml.org.4 The Section 12.2.3 discusses the statement
about the wiki.selfhtml.org supplements being declared as public
domain, CC0.

Fig. 2 – From left to right: index.html, products.html, and a cut
version of contact.html. Note the smaller font size of Impressum headline
in the right page.

All the additional layout material at the wiki entry (→ gT) CSS -
fertige Layouts differs in design, only; though the name “css complete
layouts”, not “complete Web site architectures.” So for the structural
approach I envisioned in Section 2 I won’t get a satisfying solution, but
it turned out to be the entry for my cms hypothesis. The original file
structure of the html Intro (→ google Translation), is

./ : index.html • inhalt.html • kontakt.html •
preise.html

css/ : formate.css • hobel.svg
img/ : some svg and jpg images
video/ : carpentry.mp4

Now I take a step back and revisit the knowledge I earned from
joomla about template design [23] and my typo3 research about the

4My motivation for turning to selfhtml is to reconstruct the information archi-
tecture of the deprecated web technology site initiated by Stephan Münz; see the
mirror of version 8.0 at www2.informatik.hu-berlin.de for example or look for
the latest version 8.1.2.

https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org2fecba4
https://wiki.selfhtml.org/wiki/HTML/Tutorials/Einstieg
https://wiki.selfhtml.org/wiki/HTML/Tutorials/Einstieg
https://wiki-selfhtml-org.translate.goog/wiki/HTML/Tutorials/Einstieg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en
https://src.selfhtml.org/kurse/html-einstieg/
https://src-selfhtml-org.translate.goog/kurse/html-einstieg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en
https://src.selfhtml.org/kurse/html-einstieg/
https://src.selfhtml.org/kurse/html-einstieg/inhalt.html
https://src.selfhtml.org/kurse/html-einstieg/kontakt.html
https://wiki.selfhtml.org/wiki/CSS/fertige_Layouts
https://wiki-selfhtml-org.translate.goog//wiki/CSS/fertige_Layouts?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en
https://wiki.selfhtml.org/wiki/HTML/Tutorials/Einstieg
https://wiki-selfhtml-org.translate.goog/wiki/HTML/Tutorials/Einstieg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en
https://www2.informatik.hu-berlin.de/Themen/www/selfhtml/


12 4 EXAMPLE SELECTION

typoscript language dedicated to template scripting and its current
template focus called fluid template. Combined with a three month
seminar about management systems this previous knowledge puts me
in a position to dissect the test site without destroying the workflow
of the scientific workplace5 I planned to set up for Web technology
experiments beginning with . . .

4.1 Pages

In my working environment the transferred and renamed original
html files get the sub-folder sthm0O, i.e., 0O for nil–original, in my
publishing root ~/www. It contains symbolic css/ and img/ folders
and the four files

shtm0O/: index.html • products.html • contact.html •
pricing.html

Then I pandoc these html files to org, e.g.,� �
pandoc -f html -t org -o index.org index.html� �

and copy the org files into a sub-folder of my org file root
myOrgRoot/pub/shtm0/ : index.org • products.org •

contact.org • pricing.org
I prepare another sub-folder shtm0/ in my publishing root ~/www.

Here I add real css/ and img/ folders which are supposed to be
filled with

Images I want to have all my pictures at one location only, my pic-
ture root; this is something like ~/Pictures. I’m referring to
it with symbolic links. So I can access it from latex files in
custom folders, from org folders, from html files, whatever. I
want to keep this structure of the picture root sub-folders for the
uploaded online files, too. For the example I create the sub-folder

shtm0/. In the case of the small carpentry web site example I
5As a matter of fact, part of the motivation for scientific publication stems

from mimicking an open source Scientific WorkPlace, beginning with the latex
combination, abandoning the rstudio branded markdown temptation, and finally
switching to the all inclusive org mode offer connected to gnu emacs and gnu
linux.

https://docs.typo3.org/m/typo3/reference-typoscript/main/en-us/
https://typo3.org/fluid
https://en.wikipedia.org/wiki/Scientific_WorkPlace


13

departed from this principle and put all files into shtm0/, no
subsubfolders.

After exporting the org page main content and embedding the
resulting html files into the template the media will be collected
into the ./img/ directory of the web site. An xml crawler will
have looked up the all the images which are actually used in the
html files of the ~/www/shtm0/ folder.

CSS The final css file from the procedure below, in Section 8, will
be tangled into ~/www/shtm0/css/ and end up in the ./css/
folder of the Web site.

5 Publishing Experiments

The goal of this section is to investigate the publishing process and
to identify cornerstones of possible org publish configurations. Well,
and to get ideas about constructing the real Web sites to come. And
then come up with the most basic configuration, which some people
tend to call simple.

�

This is kind of a fake order. I don’t org-publish the
pandoc’ed org files from above but the files I already
modified to get the right input for the templates, developed
in Section Website Template.

5.1 Producing the Laboratory Files

The experimental setup of the elisp code for discovering
org-publish-project-alist begins with� �
(setq org-publish-project-alist

’(("shtm0"
:base-directory "~/myOrgRoot/pub/shtm0/"
:publishing-directory "~/www/shtm0/"
:publishing-function org-html-publish-to-html )))� �



14 5 PUBLISHING EXPERIMENTS

For the short version of org2shtm I kept this code in the file
shtm0.el for maintenance.6 Then I produced a couple of publication

scenarios described in the listing below and picked the index.html
files for comparison.

When evaluated the code creates a publishing project called shtm0
which can be invoked by M-x org-publish-project [RET] shtm0
or M-x org-publish [RET] shtm0. The :publishing function ex-
ports all org files in the :base-directory to html files in the
:publishing-directory. The first four files are the result of pro-
ducing two doc-types html5 (H5) and xhtml (which is the default,
so I call it Hd) with and without <head>. The :body-only files are
marked with a trailing y.

After the first invocation of the publishing process I rename the
index.html export to indexHd.html

indexH5.html is the renamed result of adding� �
:html-doctype "html5"
:html-container "section"� �
the headless html of indexH5y.html is made with an additional� �
:body-only t� �

indexHdy.html is the same without the :html-doctype and the
:html-container.

The org Manual for versions above 9.2 reports about seven switches
to get a bare html, i.e., a minimal html file, with no css, no
javascript, no preamble or postamble, but with a complete doctype-
html-head-body structure; see Section Exporting to minimal HTML in
the org Manual.

6It’s available in the bitbucket repository’s folder supp. In the long version
it pretty soon moved into the – initially – css producing org file, which currently
might be called the cms org file.

https://orgmode.org/manual/Bare-HTML.html


5.2 Analyze It 15� �
(setq org-html-head ""

org-html-head-extra ""
org-html-head-include-default-style nil
org-html-head-include-scripts nil
org-html-preamble nil
org-html-postamble nil
org-html-use-infojs nil)� �

The corresponding org-publish-project-alist notation of the
publishing properties looks similar;� �
:html-head ""
:html-head-extra ""
:html-head-include-default-style nil
:html-head-include-scripts nil
:html-preamble nil
:html-postamble nil
:html-use-infojs nil� �

According to this info I add two bare index file versions marked by
a trailing r: indexHdr.html and indexH5r.html, respectively.

Table 1 summarizes the set of the six experimental files
indexH5.html, indexH5r.html, indexH5y.html, indexHd.html,
indexHdr.html, and indexHdy.html.

Table 1 – Set of base name trailers for experimental org html exports.

format with-head bare body-only

xhtml Hd Hdr Hdy
html5 H5 H5r H5y

5.2 Analyze It

In the first run the most interesting results were the :body-only
versions because I considered them to deliver the main content.

Comparing indexH5y.html and indexH5.html I found that
:body-only t removes the

<!DOCTYPE html> element,



16 5 PUBLISHING EXPERIMENTS

environment of <html lang="de">,

<head> and

<h1> brace for the title and its surrounding <div id="content">
brace in the <body>

preamble and the postamble.

Comparing indexHd.html and indexH5.html I observed that <h1>
was embraced in a <header> element for the html5 version. The ab-
breviated version of indexH5.html shows these elements.� �
<!DOCTYPE html>
<html lang="de">
<head> ... </head>
<body>
<div id="content">
<header><h1 class="title"> ... </h1></header>
<!-- left out content beginning with a section element -->

</div>
</body>

</html>� �
For all building blocks here’s a coarse summary of the

org-html-template from ox-html.el. The comments contain ref-
erences to corresponding variables or publishing properties.� �
<!-- xml- or php-declaration -->
<!DOCTYPE html> <!-- choose from org-html-doctype-alist -->
<html lang="de"> <!-- build <html> element language info -->
<head> ... </head> <!-- date-comment, meta, head, mathjax info -->
<body>
<!-- :html-link-up :html-link-home :html-home/up-format -->
<!-- org-html--build-preamble -->
<div id="content"> <!-- read =org-html-divs= -->
<header> <!-- a html5 feature -->

<h1 class="title"> ... </h1> <!-- depends on :with-title -->
</header> <!-- still a html5 feature -->
<!-- left out content beginning with a section element -->

</div>
<!-- org-html--build-postamble -->
<!-- insert html-klipsify-src -->

</body>



5.3 Resulting Configuration 17

</html>� �
The title which is injected by the org-html--build-meta-info into

the <head> brace doesn’t depend on the :with-title switch. By the
way, another difference of the :body-only export is that the id at-
tributes of the additional outline container <div>’s have different hash
tags. For example, the added outline <div> of a <h3> header looks like� �
<div id="outline-container-orgab9da8b" class="outline-3">
<h3 id="unsere-leistungen">Unsere Leistungen:</h3>
<div class="outline-text-3" id="text-unsere-leistungen">� �

In this code block I call the sequence ab9da8b the hash tag of the
<div>’s id="outline-container-orgab9da8b" attribute. This side ef-
fect might come in handy for customized css without analyzing the
whole export procedure for the html body. Especially the fact that
the hash tags get un-hashed by defining a custom_id property for the
corresponding section; see the org Manual’s Section Properties and
Columns.

5.3 Resulting Configuration

The most intriguing result of the experiments is that :body-only
in an html export is not only a <body> issue. But I’m fairly happy
with my minimal set of publishing options which are shown in the code
below, which I put into shtm0.el available in the bitbucket repository,
and revisited in Section 7.� �
(setq org-publish-project-alist

’(("shtm0"
:base-directory "~/myOrgRoot/pub/shtm0/"
:publishing-directory "~/www/shtm0/"
:publishing-function org-html-publish-to-html
:body-only t
:html-doctype "html5"
:html-container "section" )))� �

�
The detailed description of the experimental setup in this
section is for further investigations of all switches which

https://orgmode.org/manual/Properties-and-Columns.html
https://bitbucket.org/StPjotr/shtm0/src/master/supp/shtm0.el


18 6 WEBSITE TEMPLATE

affect the <body>. For all exports, general or html spe-
cific. In the short version I only need to notice that the
html5 decision is a source of wide spread effects. E.g.,
both the preamble and postamble switches produce a <div>
element in the <body>, but not in the :body-only ver-
sion. For inspiration I will get into (1) :options-alist
of org-export-define-backend in ox-html.el and (2)
org-export-options-alist in ox.el.

6 Website Template

Back to the transferred and renamed semi-original html files in
~/sthm0O. They are the source for identifying locations in the html

code where I might place the main content, the navigational elements,
the footer, or a menu.

The pages of the example Web site are very similar, so the header,
the navigation and the footer might be considered static. And I won’t
make a big mistake if I decide to inject only the main content. Figure
2 shows three pages of the exercise layout showcase (→ gooTrl) at the
German wiki.selfhtml.org. In the caption the file names are my
customizations of the structure I declared above, but they are linked to
the original files.

“Considered to be static” means that the <header> is really static:
it consists of an icon, the company name, and a rotated commercial
message. The navigation is a plain7 list of links. The footer of all but
the contact pages contains links to the contact page and its imprint
section.

Another minor irregularity regards the first line of what I will use
as the main content. All main contents begin with an <h1> element.
But in the contact page the <h1> element is embedded in an <article>
element and its font size is smaller. To figure out the reason for this
behavior I sketched the coarse structure of the main content in the

7The <a tabindex="0" aria-current="page"> markup for the current
page deviates from “plain”. It is discussed in the (German) quick-start manual
referring to a blog entry [4] at html5doctor.com.

https://src.selfhtml.org/kurse/html-einstieg/
https://src-selfhtml-org.translate.goog/kurse/html-einstieg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en
https://wiki.selfhtml.org/wiki/HTML/Tutorials/Einstieg/Hypertext_und_Multimedia
http://html5doctor.com/on-html-belts-and-aria-braces/


19

<body> of all pages – neglecting the <header>, <nav>, and <footer>
elements; see Table 2.

Table 2 – Sketch of the web site page elements. Every bullet introduces a
lower element level.

index contact products pricing

<h1> <article> <h1> <h1>
<p> • <h1> <p> <table>
<section> • <p> <p>
• <h2> • 2 <dl>’s • 7 <img>’s
• <ul> • <h3>
• <aside> • 9 <p>’s
• • <h3> <aside>
• • <p> • <h2>
<section> • <dl>
• <h2>
• 2 <p>’s

The contact appears kind of rough. <h1> and <h3> are on the
same level. The <aside> element isn’t used. The font-size for the
<h1> element isn’t specified explicitly in the corresponding css file

formate.css. Degrading to a lower level by being embedded in an-
other element seems to cause an implicit font-size loss. The Design 01
(→ gT) layout at selfhtml.org offers another version of this contacts
page.

Well, to be complete, I also considered the page title to be static;
this is the title that shows up in the browser’s tab register. In the
layout original the titles of the pages are different. Browser tab titles
are defined in the html <head>.

For the home page I want to produce the html code below with
a headerless html export from the file index.org in the publication
folder pub/ of my org file root� �
<h1>Willkommen ...</h1>
<p>Wir sind seit ....</p>
<section id="service">
<h2>Unsere Leistungen:</h2>

...
</section>� �

https://src.selfhtml.org/kurse/html-einstieg/css/formate.css
https://wiki.selfhtml.org/wiki/CSS/fertige_Layouts/Design01
https://wiki-selfhtml-org.translate.goog/wiki/CSS/fertige_Layouts/Design01?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en


20 7 ORG HTML EXPORT

The template for every page of the example web site is the rest
derived from the index file with the considerations above.� �
<!doctype html>
<html lang="de">
<head> ... </head>
<body>
<header> ... </header>
<nav> ... </nav>

<!-- here’s where the main content should be injected -->
<footer> ... </footer>

</body>
</html>� �

I declare this to be the template; I’ll add it as tmplt.html to the
bitbucket supplements and put the two parts above, below, and with-
out the main-content-comment as tmplt1.html and tmplt2.html into
the publishing folder pub/shtm0 of ~/myOrgRoot/. Before proceeding
to the css I’ll have to know how the export fills in.

7 Org HTML Export

Exporting an org file to html offers a lot of features, which are
reflected in a lot of publishing switches for html. And the publishing
empire in turn produces many additional opportunities for help, inspi-
ration, and distraction. First I’ll investigate on the file based options
for the header of my index.org file which is supposed to substitute
the main content placeholder in the template.

The lines beginning with #+8 in an org file escape the text mode
to some kind of control mode which translates to in-buffer-settings or
export settings, for example. Typing #+ in a new line and asking for
completion with M-[TAB]9 shows all available setting keywords.

8I began to call these escapes directives for myself to separate them from #+begin
container constructs and to see them as parallel to C’s preprocessor directives; see
the wikipedia entry directive (programming). But I’m not sure if directive is a
good choice.

9Many desktops intercept M-[TAB] to switch windows. Use C-M-i or [ESC]
[TAB] instead.

https://orgmode.org/manual/In_002dbuffer-Settings.html
https://orgmode.org/manual/Export-Settings.html
https://en.wikipedia.org/wiki/Directive_(programming)


21

The following #+ settings in the org file header are for the
test suite. Later some of them are transferred into the project’s
org-publish-project-alist entry. But that depends on the nature
of each option. For example, #+Language: de is related to the indi-
vidual file, so it should stay in the file. While #+Options: num:nil
toc:nil depends on the web site architecture, so they might end up
in the publishing alist as :section-numbers nil or :with-toc nil;
see the end of Section 3.

The org code of the in-buffer #+HTML_CONTAINER: section prop-
erty transfers to the elisp code publishing property :html-container
"section". We can derive this connection by looking up the
in-buffer property at the Manual’s Section HTML Specific export
settings and inspect the doc-string of the corresponding M-x h
org-html-container-element. Or look up the whole collection of
property relations in the backend definition of ox-html.el, i.e., the
:options-alist of org-export-define-backend.

Apart from entries like #+Title:, #+Subtitle:, #+Author:, or
#+Email: the settings for the carpenter’s site are

#+Language: de
#+Options: num:nil toc:nil
#+HTML_CONTAINER: section
#+HTML_DOCTYPE: html5

I assume the #+Language: to affect the body, so I’ll keep it. I’ll set
the num and toc attributes of #+Options: to abandon header num-
bering and the table of contents, respectively; see the general Export
Settings . The #+HTML_DOCTYPE setting seems useless for the body-only
export. While the corresponding element isn’t inserted, it affects the
usage of html5 elements in the body. The #+HTML_CONTAINER: de-
termines the next level beyond the <body> element; this level adds
an element bracket for the whole content; see HTML Specific Export
Settings in the Manual.

�
The Manual’s Section html preamble and postam-

ble can be another source of inspiration for produc-
ing the main content. See the docstring of C-h o

https://orgmode.org/manual/HTML-specific-export-settings.html
https://orgmode.org/manual/Export-Settings.html
https://orgmode.org/manual/Export-Settings.html
https://orgmode.org/manual/HTML-specific-export-settings.html
https://orgmode.org/manual/HTML-specific-export-settings.html
https://orgmode.org/manual/HTML-preamble-and-postamble.html
https://orgmode.org/manual/HTML-preamble-and-postamble.html


22 7 ORG HTML EXPORT

org-html-postamble-format. Unfortunately they are
skipped for body-only exports.

7.1 Aside

The #+HTML_DOCTYPE: (see the Manual) triggers different conver-
sions of special elements like <aside> which is used in the index page;10

see the Angebot panel in the left part of Figure 2 and the <aside> place-
ment in Table 2. The org code to produce this element is� �
#+Attr_html: :id offer
#+begin_aside
#+Html: <h3>Angebot</h3>
Nächste Woche 10% auf alles!
#+end_aside� �

The first line of the block below shows the enclosing elements for
regular conversion, the second line is the html5 version� �
<div id="offer" class="aside"> .. </div>
<aside id="offer"> .. </aside>� �

The #+HTML_CONTAINER: section (see the Manual’s Section
HTML doctypes) has two relevant effects. The usage in the org header
puts the whole document body into a <section> brace. Here the dif-
ference of the xhtml default and html5 is� �
<div id="outline-container-org7bdb0cc" class="outline-2">
<section id="outline-container-org79ac04b" class="outline-2">� �

Another possible usage is related to the last paragraph of the
Manual’s Section HTML doctypes : “Special blocks cannot have head-
lines. For the html exporter to wrap the headline and its contents in
<section> or <article> tags, set the HTML_CONTAINER property for
the headline.” The offer <aside> could be org coded like� �
*** Angebot

:PROPERTIES:
:HTML_CONTAINER: aside

10The <aside> is also used in the contacts page, but it’s shown like a section.
Fixing this might be a proper exercise after finishing this blog entry.

https://orgmode.org/manual/HTML-doctypes.html
https://orgmode.org/manual/HTML-doctypes.html
https://orgmode.org/manual/HTML-doctypes.html


7.2 Headline Levels 23

:CUSTOM_ID: offer
:END:

Nächste Woche 10% auf alles!� �
And it would be exported as the html snippet below; another ad-

vantage: for the latex, and any other export it would produce a reg-
ular subsubsection, not an aside environment which I would have to
define otherwise. But it gets more difficult to address the css back-
ground property for this <aside> element.� �
<aside id="outline-container-org70aac58" class="outline-4">
<h4 id="offer">Angebot</h4>
<div class="outline-text-4" id="text-offer">
<p>Nächste Woche 10% auf alles!</p>

</div>
</aside>� �
7.2 Headline Levels

In the preceding sections I produced an index.org file for the main
content of my home page. Now I can compare the differences between
export and intended main content; I’ll call them ex-main and in-main.

the whole ex-main is enclosed in� �
<section id="outline-container-org60ba67b"

class="outline-2"> .. </section>� �
the heading tags include the id attribute of the PROPERTIES
drawer’s CUSTOM_ID: field. I didn’t include the drawers myself;
they were planted there by pandoc’ing the example html files
to org markup.� �
<h3 id="unsere-geschichte">Unsere Geschichte:</h3>� �
This also encourages the usage of custom ID’s for proper linkage.

every header is followed by another <div> enclosing the text of
the section



24 7 ORG HTML EXPORT� �
<div class="outline-text-3" id="text-unsere-geschichte"> ..
↪→</div>� �
and all the ex-main heading levels are increased by one level, e.g.,
<h1> in in-main relates to <h2> in ex-main.

Headline Level Increase
The reason for the level-increasing effect led to the insight stated
in Section 5.2. Using the “body-only” switch C-b in org’s html
export not only leaves out the whole <head> element, it also refuses
to put the <header> element into the <body>. Well, “body-only” is
definitely shorter than “no head and header and som other effects”
and the export dispatcher is used for other exports, too. So, this
seems to be the ambiguity we have to deal with for html export.
Probably I didn’t find the export switch for the <header> element,
yet. For a “head-and-body” export the <header> element in the
<body> would look like� �
<header>
<h1 class="title">Schreinerei Meier</h1>
</header>� �

That’s where the <h1> is lost. On the other hand the <header>
part of the intended example homepage is already sourced out to
the template:� �
<header>
<a id="backlink" href="index.html"><img src="img/logo.svg"
↪→alt="logo"></a>
<p>Schreinerei Meier</p>
<p>ihre Werkstatt für gutes Wohnen!</p>

</header>� �
It doesn’t use a heading element, and the style file formate.css

employs some very recent css magic to address the first and
the last paragraph: p:first-of-type and p:last-of-type.
This insight plus the field trip above about “sectionizing” the
<aside> element might deliver ideas for structural org files

https://src.selfhtml.org/kurse/html-einstieg/css/formate.css
https://developer.mozilla.org/en-US/docs/Web/CSS/:first-of-type
https://developer.mozilla.org/en-US/docs/Web/CSS/:last-of-type


25

aimed at web site architecture. See also the doc-string of C-h o
org-html-toplevel-hlevel.

Now I can think of three procedures to connect the main content to
the template

use the html extract and change the css
change the html extract with the css untouched
change both to support org export and publishing features.

For this to decide I’ll introduce the org mode css procedure bor-
rowed from Fabrice Niessen in the next section.

8 Org CSS Construction

This section is about tangling designated parts of an org file
into a style file. The short version in Org CSS Construction at
pjs64.wordpress.com skips the details about Niessen’s idea and the
implications I derived from it.

Apart from the headlines the only descriptive text, Niessen puts in
his css/js construction file readtheorg.org is

“Get the lowdown on the key pieces of ReadTheOrg’s in-
frastructure, including our approach to better html export.
The setup file links to the web pages.”

This is a rather unobtrusive way of advertising a groundbreak-
ing method of css organization. With readtheorg.org Niessen cov-
ers the construction of two css and one javascript file. imho the
javascript parts can be covered by css3

Brainstorm
The html-export of Niessen’s readtheorg.org doesn’t explain
much either, unless the fact that it is possible to export it. The
potential that I see in this css – and javascript and template
and Web site – constructing org file is not discussed in the reposi-
tory. Probably I missed something. In my opinion the multipurpose
constructor file delivers for Web sites what reproducible research is

https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#orge24c3cc
https://raw.githubusercontent.com/fniessen/org-html-themes/master/src/readtheorg_theme/readtheorg.org
https://raw.githubusercontent.com/fniessen/org-html-themes/master/src/readtheorg_theme/readtheorg.org
https://raw.githubusercontent.com/fniessen/org-html-themes/master/src/readtheorg_theme/readtheorg.org


26 8 ORG CSS CONSTRUCTION

supposed to do for science.
It can be employed to act as documentation and showcase for
the methods and definitions included.
It can contain any information or source code blocks which
can be used for manipulation or description of the tangled
code or for producing additional parts of a proper documen-
tation.
It can be employed to map information architecture. A thor-
ough combination of the org features of publish, export,
noweb, tangle, babel, capture, hyperlinks, agenda, times-
tamps, or tables might deliver a sequential one-level solution.

The approach combined with org source code blocks is aimed
at replacing the sass and less precompilers for css combined with
JavaScript magic. Or a diy alternative or supplement to the Jam-
Stack approach, recommended by netlify.

In the exercise example of this blog the css construction is
focused on org’s tangling concept, only. Only? The implemen-
tation of the tangling concept also offers diversified commenting
switches, which invite the user to a wide range of applications;
see the :comment and the :padline header arguments in the Man-
ual’s Section Extracting Source Code. The same section holds other
goodies like :link, :mkdirp, :shebang, or :tangle-mode.

My utilization of org tangling begins with cutting the example’s
css file formate.css into pieces, putting the pieces into css source
code blocks and embedding them in an outline structure of an org file.
The source code block has to employ a tangling mark, i.e., a header
argument, like :tangle yes or :tangle filename. There are four
levels of customizing the tangling target or any header entry

put :tangle path/2/style.css in the header of the source code
block; see the Extracting Source code Section in the org Manual.

put it into a heading’s property drawer like :header-args:css:
:tangle path/2/style.css; see the Using Header Arguments
Section.

put #+PROPERTY: header-args:css :tangle

https://www.netlify.com/jamstack/
https://www.netlify.com/jamstack/
https://orgmode.org/manual/Extracting-Source-Code.html
https://src.selfhtml.org/kurse/html-einstieg/css/formate.css
https://orgmode.org/manual/Extracting-Source-Code.html
https://orgmode.org/manual/Using-Header-Arguments.html


27

path/2/style.css anywhere into the document, probably
in the file header

setting org-global-properties; see the Property Syntax Sec-
tion.

For the short carpenter’s site example it’s not necessary to use either
of them, because for :tangle yes every css source block is filled into a
file with the base name of the org file which contains the code blocks.

Nonetheless I’ll include an :tangle ~/www/shtm0/css/shtm0.css
in the property drawers of the sections which contain css code for the
shtm0 example. In the example these are all code blocks, but the next
step for producing different files is close at hand. I don’t know if this
is a good idea; the next projects will show.

�
The header argument :output-dir doesn’t work for tan-
gling, but for source code block output, which is addressed
by the result type :file; see Section Results of Eval-
uation which also introduces :file-desc, :file-mode,
:file-ext, or the result format html with :wrap fine tun-
ing. The Section Environment of a Code Block offers a
paragraph about :dir and :mkdirp corresponding to the
working directory. The examples in these condensed man-
ual sections might also serve a source of inspiration for
publication-related aspects of org source code blocks. Any-
way I’ll have to make sure that the css/ folder exists; see
Section 11.3.1 for the corresponding routines applied in the
Test, one, two, three case.

The adaption of the css to the html export and the design mea-
sures are described in the short version’s Section Org CSS Construction
at pjs64.wordpress.com.

�

For the htmlize11 driven feature of inline css, espe-
cially its failure in batch mode, see the doc-string of

11External info at the emacs-htmlize github page, elpa entry, or the entry at the
emacs wiki.

https://orgmode.org/manual/Property-Syntax.html
https://orgmode.org/manual/Property-Syntax.html
https://orgmode.org/manual/Results-of-Evaluation.html
https://orgmode.org/manual/Environment-of-a-Code-Block.html
https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#orge24c3cc
https://github.com/hniksic/emacs-htmlize
https://elpa.nongnu.org/nongnu/htmlize.html
https://www.emacswiki.org/emacs/Htmlize


28 9 GLUE HTML AND EXTRACT IMAGES

org-html-htmlize-output-type. In contrast with other
applications of htmlize this reflects the situation for html
export of a buffer.12 A controlled construction of htmlize
is facilitated by org-html-htmlize-generate-css.
Get more diy org → html hints in the doc-strings
of htmlize-buffer, htmlize-file, htmlize-many-files,
htmlize-many-files-dired, htmlize-region.

9 Glue HTML and Extract Images

In the carpenter’s Web site assimilation [20] Section Glue HTML
and Extract Images delivers the central content of the post. In the
extended version the procedure is sketched in Section 11; it gets a
structural introduction, a preparation for information retrieval and the
glue and image part are split up.

[20]’s glue and image section concludes with the collection of media
into the publication folder. I maintain an image root folder and deter-
mined its sub-directory shtm0/ for keeping all the files which are from
the zip repository of the example and the files I choose to add myself.
In the org source for the Web pages links to the images were inserted
with file:./img/xxx.yyy where ./img/ is a symlink to my image
root. In the html export this img/ directory is a real folder which is
supposed to contain real media.

�
My image concept usually needs a sub-folder in the img/
directory of the upload folder. For this to work the
file.copy() of the last line would need a directory check;
see Section 11.4.2 for the routine. In the short version [20]
I don’t use this subfolder structure; I just put all the media
into img/.

For the extended 1-2-3 version, see Section 11, I might have
been able to combine publishing properties like :base-extension,

12For latex export we have the choice between plain verbatim environments, like
verbatim itself or its fancy version fancyvrb and code highlighters, like listings or the
pygment wrapper minted.

https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org43c580d
https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org43c580d
https://rdrr.io/r/base/files.html
https://www.ctan.org/pkg/fancyvrb
https://www.ctan.org/pkg/listings
https://www.ctan.org/pkg/minted


29

:exclude, and :include to utilize the publishing function
org-publish-attachment. For instance I could have used the method
for selecting updated pages to construct a file list for the :include
property and use my image root sub-folder as :base-directory; see
Selecting Files and its preceding section in the org Manual. It might
be far off in this case but a reasonable solution for other approaches.
See Ogbe’s solutions, annotated in Section 13.1 and summarized in
Table 5.

10 Netlify Drop

The result of the short version [20] was a Web site which is shown
as a screenshot excerpt in Figure 3.

Fig. 3 – Org mode version of index.html, products.html, and a shrinked
version of contact.html.

Netlify has a very fine grained billing model. I didn’t offer the url
for the resulting netlify.app as a show case, because – without further
investigations – I can’t relate the billing for traffic to the bandwidth
concept. For me this is another rookie issue like my elisp illiteracy.

Netlify offers some insight into their models but the documentation
has the same issues as many other usage manuals. It’s about standards
not the many implications of a multitude of applications. There’s a ded-
icated Billing Section, and there are many topic related billing parts of
every metered feature, like monitoring, visitor access, forms, functions,
and large media. But for me even the terminology is so far from my
imagination that I had to visit other resources to tackle the issues. The

https://orgmode.org/manual/Selecting-files.html
https://docs.netlify.com/accounts-and-billing/billing/
https://docs.netlify.com/monitor-sites/analytics/usage-and-billing/
https://docs.netlify.com/visitor-access/identity/usage-and-billing/
https://docs.netlify.com/forms/usage-and-billing/
https://docs.netlify.com/functions/usage-and-billing/
https://docs.netlify.com/large-media/usage-and-billing/


30 11 TEST, ONE, TWO, THREE

Billing Section links to the second item below, and I don’t remember
what led me to the first one.

cloudflare + netlify 2021-02-08 entry at blog.bytefaction.com.
According to the url it’s about outsourcing bandwidth to
cloudflare. But this might be a matter of jumping out of
a frying pan into the fire.
More Info at the support guide How to reduce your site’s band-
width usage (without reducing traffic!) at answers.netlify.com.

I tend to a more elaborate model which avoids the metered large
media feature. For pixelized photos I’d prefer a thumbnail which points
to some sources at wikipedia commons or pixelfed; the git hash
of a thumbnail at least offers the necessary updating feedback. For info
graphics and plots I’d suggest an svg version, or even better the graph
producing script with raw data access. That’s more like reproducible
research. For videos it’s even more interesting to reduce the traffic or
bandwidth. Videos that are the result of screen casting might be turned
into a latex beamer presentation, or a slideshow. Audio for screen
casts is usually not based on a script; in the worst case an unedited
conglomeration of hmmmms and ehems. Same counts for presentations.
So there are many stages in the production cycle to reduce the potential
of data volume increments.

11 Test, One, two, three

The fact that :body-only is not only a <body> issue makes too
much publishing features unavailable. On the long term I think I will
go with the bare model and immensely use R aided xml editing based
on explicit node treatment. Particularly the section Glue HTML about
embedding the body-only exports into the template will probably move
from gluing to node replacement.

But first I want to apply the the short version approach to my initial
steps of a clueless preparation of a few org mode stubs – see Section
2. This application is going to include

directory split for structural files and postings
pdflatex the org2shtm expanded or long version (this document)
html’izing both the posting and its bibliography. This part

https://docs.netlify.com/accounts-and-billing/billing/
https://blog.bytefaction.com/posts/save-netlify-bandwidth-using-cloudflare/
https://answers.netlify.com/t/support-guide-how-to-reduce-your-sites-bandwidth-usage-without-reducing-traffic/42768
https://docs.netlify.com/large-media/usage-and-billing/
https://docs.netlify.com/large-media/usage-and-billing/


11.1 Expanded Configuration 31

turned out to deliver a pretty tricky construction of symlink
and #+include:. The problem is reported and solved in Section
11.2.3.
adaption of image links and collection into the upload folder

The result will be a volatile publication. This time I’m going to
provide the netlify.app url in order to monitor all the un-billed
statistics I can get hold of. And when something unusual happens I
intend to pull the plug. That’s the volatile part.

�
The whole procedure depends on unshared

org macros in the setup file config.org included by
#+SetupFile: ../config.org,
custom org entities listed in entity.org included
by an org-entities-user variable defined in my

~/.emacs file,
latex macros invoked by the org macros in

config.org and in the latex template; see Section
11.2.1.

The whole construction is a work in progress driven by the motiva-
tion to switch from latex sweave to org mode procedures. There
are so many variables, methods and files involved in this process that
I’m just happy to derive the necessary steps manually. A proof of con-
cept. While I don’t provide the source files at least I’ve illustrated the
scaffold of my image, latex and org file roots in Figure 4.

11.1 Expanded Configuration

My choice for this next level publishing is about wiring the hard disk
to a publication folder by harnessing symlinks, org #+include:’s, and
org search options. The org files themselves could provide additional
selection features like tags; see Section 12.3. The symlink org files in
the :base-directory will result in real html files at the publishing
folder. A symlink index.html in the publishing root will point to
the starting page file index.html in the sys/ folder. Here’s the

https://orgmode.org/manual/Include-Files.html
https://orgmode.org/manual/Search-Options.html


32 11 TEST, ONE, TWO, THREE

Fig. 4 – Three root folders of the expanded home page structure. Image
produced with embedded plantuml source code.

:base-directory with its files, the settings within them, and the fea-
tures they provide; see Figure 4 for the file structure.

sys/, the folder with Web site structure files

• index.org #+Options: num:t switch on headline num-
bers. The text has org file links which turn into html file
links.

• about.org has two subsections, an internal Web site link,
and an inset picture.

• tmplt.org is supposed to produce the template, but the
best I could do by now is to prepare tmplt0.html manually
and split it to tmplt1.html and tmplt2.html.

2205/, a monthly folder

• 02a.org contains an #+include: of
rel/path/2/orCon.org::#cap-ref-arch with a :lines
"1-47" option; it uses the headline of the referenced section
in orCon.org and add the specified number of lines. The
line specification cuts off the following subsection structure;
this post qualifies for testing the :minlevel argument. The
file also contains table of links to the sub-02-posts b–f. Note
that the sub-02-posts d–f are accessible through this table
only, not by the menu.

https://bitbucket.org/StPjotr/hp/src/master/orgRoot/pub/hp/sys/index.org
https://bitbucket.org/StPjotr/hp/src/master/orgRoot/pub/hp/sys/about.org
https://bitbucket.org/StPjotr/hp/src/master/orgRoot/pub/hp/sys/tmplt.org
https://bitbucket.org/StPjotr/hp/src/master/orgRoot/pub/hp/2205/02a.org


11.1 Expanded Configuration 33

• 02b.org and 02c.org #+include: other sections with an
:only-contents t option. 02b.org substitutes the miss-
ing headline with a horizontal-line concept, while 02c.org
uses a headline and an abstract construction with additional
information.

• 02d.org to 02f and 03.org contatin a plain #+include:
with no options

• 04.org is not included in the repository folder because it’s
symlink to orgRoot/tools/04.org

img/ a symlink to my imgRoot/
css/ a symlink to a css folder in my orgRoot/

See the org Manual’s Include Section for arguments like
:only-contents, :minlevel, or :lines. The settings and features
are a result of the procedures in the next Sections 11.2, 11.3, and 11.4.
The publishing alist is� �
(setq org-publish-project-alist

’(("hpSys"
:base-directory "myOrgRoot/pub/hp/sys"
:publishing-directory "~/www/hp/sys"
:exclude "tmplt.org" )
("hpBlg"
:base-directory "myOrgRoot/pub/hp/2205"
:publishing-directory "~/www/hp/2205" )
("hp"

:components ("hpSys" "hpBlg"))
))� �
with hpSys and hpBlg sharing the properties below. I removed the

shared properties from the alist above to reduce the code block size and
to empasize the common settings.� �
:with-toc nil
:section-numbers nil
:publishing-function org-html-publish-to-html
:body-only t
:html-doctype "html5"
:html-container "section"� �

The main difference between the two publishing components hpSys
and hpBlg is their timestamp behavior. As far as I observerd in the

https://bitbucket.org/StPjotr/hp/src/master/orgRoot/pub/hp/2205/02a.org
https://bitbucket.org/StPjotr/hp/src/master/orgRoot/pub/hp/2205/02a.org
https://bitbucket.org/StPjotr/hp/src/master/orgRoot/pub/hp/2205/02a.org
https://bitbucket.org/StPjotr/hp/src/master/orgRoot/pub/hp/2205/02a.org
https://bitbucket.org/StPjotr/hp/src/master/orgRoot/pub/hp/2205/02a.org
https://bitbucket.org/StPjotr/hp/src/master/orgRoot/pub/hp/2205/02a.org
https://bitbucket.org/StPjotr/hp/src/master/orgRoot/tools/04.org
https://orgmode.org/manual/Include-Files.html


34 11 TEST, ONE, TWO, THREE

real sys files the publishing process can track the content, while the
#+include: part of the files in the blg directory prevents from updat-
ing checks. And all files but the symlink 04.org can be published by
org-publish-current-file.

When I review the file structure I immediately got other ideas for
a proper structure. For example in 2022-06 I’ll run into the problem of
having to define a new component. But right now the task is to define a
structure at all, not the structure for every purpose. The most obvious
choice would be blg/ instead of 2205/. Or starting from the root
recursively, excluding the sys/ folder. Another idea is to put the css
file into the sys/ folder.

With an increasing number of files it’s probably a good idea to put
up a check list like Table 3. An org table can be used to control and
document the blog entries. The short column names in Table 3 are
designed for direct usage as variables. I could put this table in my

hp.org file which started with the css constructor; now the file kind
of naturally grows into the architecture file I was hoping for. First I
added the elisp code for publishing, then the R code for collecting the
image files. But the file still sits in the css/ folder; it probably will
move into the sys/ department which itself might grow into another
structure with a corresponding table illustration.

11.2 Bibliography and PDF

In my first attempt I was working on the original org2shtm0.org
file in my orgRoot/ then, according to Section 11.2.3 switched to the
#+include: file 04.org representing the id of the publishing process.
Apart from that detour the whole procedure depends on unshared org
macros, custom org entities, latex macros; see the What’s More Sec-
tion 12.2.1 for their purpose and Figure 4 for the involved file structure.

In the pdf construction cycle I have to make sure that any
#+BIBLIOGRAPHY: line is commented. This line is necessary for
the html bibliography procedure handled by the inclusion of

ox-bibtex.el; see Section 11.2.2.



11.2 Bibliography and PDF 35

Table 3 – Publishing Map. Legend: p .. the subfolder of pub/hp/, f ..
org file name base, t .. title, i .. flag for inclusion or symlink, s .. source, o
.. include options and other text.

p f t i s o

2205 02a ORG
Capture

i orCon.org::#cap-
ref-arch

X

2205 02b Attachmentsi orCon.org::#attachmentsX
2205 02c Capture i orCon.org::#capture-

2
X

2205 02d Protocols i orCon.org::#protocols
2205 02e Refile i orCon.org::#refile
2205 02f RSS

Feeds
i orCon.org::#rss-

feeds
2205 03 ORG

Help
i orCon.org::#sec-

org-help
2205 04 ORG 2

Web Site
s 04.org

11.2.1 Compiling Latex

I first export the latex body from the posting file org2shtm0.org
which delivers org2shtm0.tex. Then I insert an inclusion macro
\PartIn[2]{} into my latex template tools.tex.� �
%--------------------------------------------------
% Org 2 shtm0, publication
\PartIn{Org to Website}{rel/path/2/org2shtm0}� �

tools.tex contains the latex configuration and all my victims
for latex compilation in a structured ascii manner.13 They are all
commented unless they should be compiled.

The \PartIn[2]{} command shares its purpose of file inclu-
sion with other constructs like \LineFile[2]{..}, \FileIn[2]{..},
\FileInNN[2]{..}, \starsub[1]{..}, \FileLine[2]{..}, or plain
\input{}. I’ll hide the ingenuity of these macros from the curious

13This is the blueprint for something I might implement as an org mode agenda,
but I first turned all the material I’m working on into a project file. I just can’t find
a way to put my thoughts into a get-things-done pattern. Talking of ill-structured?
Here we go.



36 11 TEST, ONE, TWO, THREE

reader. The top level scientific definition of \PartIn[2]{} is� �
\newcommand\PartIn[2]{\newpage\part{#1} \input{#2}}� �

I’ll use two results of this procedure (1) the pdf is ready for upload
(2) the aux is the source for html creation.

11.2.2 BibTeX HTML

With the help of Filliâtre and Marché’s bibtex2html tools I man-
ually extract the bibtex entries to org2shtm0.bib, clean up the entry
fields, and copy both the pdf and the bib file to the org2shtm0.org
folder. bibtex2html is also used by ox-bibtex.el; it offers the
auxiliary programs aux2bib for extracting bibliography entries and
bib2bib for manipulating the extract. The main program bibtex2html
htmlizes the bibtex source file and the <table> snippet.� �
cd my/docs/tex
cp ltxTmplt.pdf rel/path/2/org2shtm0.pdf
aux2bib ltxTmplt.aux > org2shtm0.bib
bib2bib --remove owner --remove timestamp --remove abstract
↪→--remove journal-url --remove language --remove keywords
↪→--no-comment -ob org2shtm0.bib org2shtm0.bib
cp org2shtm0.bib rel/path/2� �

Removing the abstract field might be a bad idea when you plan to
use bibtex2html’s feature of printing commented bibliographies: “If
a bibtex entry contains a field abstract then its contents are quoted
right after the bibliography entry in a smaller font, like this.”

I may consider removing the comments in the bib file manually.
Furthermore I may like to change the sorting of the bib file. That’s a
matter of bib2bib configuration; the flags -s ’author’ -s ’$date’
for example sort by author, then by date.

�

Hint form the bib2bib man page: “When sorting, the re-
sulting bibliography will always contain the comments first,
then the preambles, then the abbreviations, and finally the
regular entries. Be warned that such a sort may put cross-
references before entries that refer to them, so be cautious.”

http://www.lri.fr/~filliatr/bibtex2html
http://www.lri.fr/~filliatr/bibtex2html
https://www.lri.fr/~filliatr/bibtex2html/doc/manual.html#sec5
http://www.lri.fr/~filliatr/bibtex2html/doc/examples/publis_abstracts.html


11.2 Bibliography and PDF 37

Now I test the export inside the :base-directory the first time; the
first time reflects the situation with a symlink 04.org in the pub/hp/
to org2shtm0.org in the tools/ folder of my orgRoot; see Figure 4.
I uncomment, activate or insert

#+BIBLIOGRAPHY: org2shtm0 plain option:-a limit:t

in org2shtm0.org and export the file to html. With installed
ox-bibtex.el the existence of #+BIBLIOGRAPHY: results in two files

org2shtm0.html and org2shtm0_bib.html. The first is the resulting
html export with a bibliography table snippet called citation list and
adapted citation links. The _bib.html is a htmlized version of the
collected bibliography entries. The citation link table is inserted at the
#+BIBLIOGRAPHY: location.

�
I could have skipped copying org2shtm0.bib

to the :base-directory and instead used
my/docs/tex/org2shtm0 as bib file path in the
#+BIBLIOGRAPHY: directive. Same results.

! Bug? Citations like \cite{fu2018bom,fu2018bor} are
put correctly in the text and in the citation table, i.e. the
bibliography appendix, but the entry in the bib file isn’t
transferred into the html version of the bib file. For correct
transfer they have to separated into \cite{fu2018bom} and
\cite{fu2018bor} by more than a space; a comma works.
Not tested: or added with seperate \nocite{} commands?
I didn’t look for the cause of this bug. bibtex2html or

ox-bibtex.el?

11.2.3 Symlink Publishing Adaption

Remember that my intended approach was a 04.org symlink in
the :base-directory linked to my working file org2shtm0.html. And

http://www.lri.fr/~filliatr/bibtex2html


38 11 TEST, ONE, TWO, THREE

manually commenting the #+BIBLIOGRAPHY: directive. In the previous
section I called this configuration the first time.

So what happens when I publish the file from the symlink 04.org?
It results in two files org2shtm0.html and org2shtm0_bib.html
in the :base-directory and another org2shtm0.html in the
:publishing-directory. But the base org2shtm0.html is the ci-
tation list <table> for the reference inclusion. Seems part of the ox-
bibtex.el feature to overwrite this snippet with the html export of

org2shtm0.org. And the publishing process somehow enters into the
bibtex process before overwriting or a final clean up.

So, I publish the symlink 04.org and get (two) org2shtm0.html
files. Nice. But I want to keep the 04 signature. My first ideas for
possible responses

1. forget about the date for bibliography blogs, just copy the bib file
in the publishing folder; this also might be part of a publishing
project

2. rename the files and the internal references with a cumbersome
R XML script

3. rename the original work file in the original folder to 04.org and
copy the resulting bib file like above; might lead to name clashes.

I began testing items 1–3 and then disovered item 4. When I was ready
for publishing the first issue of my volatile Web site I debugged the
error commented in the hint below which led to item number 5.

4. point the 04.org symlink in the :base-directory to
a file 04.org in the same folder as org2shtm0.org,
i.e., orgRoot/tools. This real 04.org #+include:’s

org2shtm0.org and I can add publishing features, beginning with
the #+BIBLIOGRAPHY: line.

5. if I use org2shtm0.org with the #+BIBLIOGRAPHY: line another
way to put the internal references right is to include a bib file
named 04.bib. This produces the citations in 04.html and
the bibliography excerpt 04_bib.html and includes 04.html in
the html export org2shtm0.html

Awesome. I found a way to overcome the manual commenting and
uncommenting of the #+BIBLIOGRAPHY: line and made room for other
editorial tasks. After publishing the symlink I find 04.html in the
:publishing-directory, but 04_bib.html is still in the orgRoot/

http://CRAN.R-project.org/package=XML


11.3 Glue HTML 39

folder, so I finish with� �
cd ~/orgRoot/Tools
cp 04_bib.html ~/www/hp/2205/� �

�

Hint: Don’t hide the #+BIBLIOGRAPHY: line in a com-
mented section. I just made this error by appending a
commented appendix section as the last entry. Then my
inclusion file, the real 04.org in the orgRoot/ folder,
cut off all the content after the #+include: setting.

11.3 Glue HTML

In contrast to Glue HTML and Extract Images at
pjs64.wordpress.com I now seperate the html embodiment
from the image treatment. The section Paths and Files is for both
the template inclusion and the image comparison. It probably will be
placed more properly at the beginning of the whole architechture file

hp.org.

11.3.1 Paths and Files

Two differences to Paths and Files at pjs64.wordpress.com.
The template files moved to sys/.
Directory check for the css/ folder.

The second item ensures an existing folder for the css tangling fur-
ther down in an integrated org mode file hp.org. The header argu-
ments :header-args: :tangle ~/www/hp/css/hp.css in hp.org
expect a css/folder in ~/www/hp/.� �
pub <- "~/myOrgRoot/pub/hp";
www <- "~/www/hp"; setwd (www);
pic <- file.path(www, "img"); if(!dir.exists(pic)) dir.create(pic);
sty <- file.path(www, "css"); if(!dir.exists(sty)) dir.create(sty);
t <- c(file.path(pub,"sys","tmplt1.html"),

file.path(pub,"sys","tmplt2.html"));� �

https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org43c580d
https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org71ca01d


40 11 TEST, ONE, TWO, THREE

11.3.2 Select Updated Pages

For development mode I use css/ and img/ symlinks ; for pro-
duction mode I have to make sure to turn them into real folders. The
symlink checker Sys.readlink() is for the index.html symlink in the
root only; it avoids surrounding the index.html file in sys/ twice
with the template brace. According to the help file this is a posix
feature not available at windows.

Looking for "<!doctype" should be expanded to find "<!DOCTYPE"
too. Might be a matter of putting the scan() function into a tolower()
function. The other functions are list.files(), append(), length(), and
the for(){} control.� �
listHtml <- list.files(path=www, recursive=TRUE,

pattern="[.][hH][tT][mM][lL]?$");
del <- NULL;
# sort out
for (i in 1:length(listHtml)) {quest=FALSE;
# have to include "<!DOCTYPE" also

if(scan(listHtml[i],character(),1,quiet=TRUE)=="<!doctype") {
quest=TRUE } # doctype test
if(Sys.readlink(listHtml[i])!="") {

quest=TRUE } # symlink test
del <- append(del,quest)}

listHtml <- listHtml[!del]� �

11.3.3 Page Assembly

In the carpenter’s version Page Assembly and Media Check included
the collection of image src attributes. Now the page assembly is re-
duced to file.append(), file.copy() and tempfile().� �
for (i in 1:length(listHtml)) {

x <- tempfile(fileext=".html");
file.append(x,c(t[1],listHtml[i],t[2]));
file.copy(x,listHtml[i],overwrite=TRUE)

}� �

https://rdrr.io/r/base/Sys.readlink.html
https://rdrr.io/r/base/scan.html
https://rdrr.io/r/base/chartr.html
https://rdrr.io/r/base/list.files.html
https://rdrr.io/r/base/append.html
https://rdrr.io/r/base/length.html
https://rdrr.io/r/base/Control.html
https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#orgc192e40
https://rdrr.io/r/base/files.html
https://rdrr.io/r/base/files.html
https://rdrr.io/r/base/tempfile.html


11.4 Image Handling 41

11.4 Image Handling

Relative links in #+include:’d org files are prepended by the rel-
ative inclusion path. If I include a file with

#+Include: "../../../tools/orCon.org::#attachments"

then a relative path like ../img/org/capture.png
is translated to ../../../img/org/capture.png
A relative path like ./img/org/capture.png
would result in ../../../tools/img/org/capture.png

In any of these cases I need to make sure that the image path
begins with ../img. This is a problem for file 02c.html only, but
I’m curiaous about a proper procedure for exchange.

11.4.1 Change Relative Image Links

Changing the relative image links exercises xpath and xml node
treatment in the external pointer concept of the R package XML. The
two pages of Section 3.9 Three Representations of the DOM Tree in R
in [15]’s Chapter 3 Parsing XML Content explain the concept. And
they raise the awareness for the cloning feature. The description of
xmlClone() in the function summary of [15]’s Chapter 6 Generating
XML reveals a condensed version, which reflects the pointer-reference
distinction in C-functions:

“Create a copy of the xml node or document provided. The
element will be cloned to create a new C-level structure.
The recursive argument indicates whether all the child
nodes will be cloned as well, or only the top-level node.
Cloning is not the same as assignment. When we clone, we
make an explicit copy of the C data structure and return
that copy (which may then be assigned to an R variable).
Simply assigning an internal node to a variable does not
make a copy of it, unlike most objects in R, but merely
copies the externalptr object. As a result, a simple as-
signment means any subsequent changes to the node will

http://CRAN.R-project.org/package=XML
https://rdrr.io/cran/XML/man/xmlClone.html


42 11 TEST, ONE, TWO, THREE

appear in all references to it. In contrast, when we clone
a node or document, the original and the copy are inde-
pendent copies and changes to one are not reflected in the
other.”

— Description of xmlClone() in Section 6.8 Summary of
Functions to Create and Modify XML of [15]’s Chapter 6

Generating XML, p.224

After all this is just a motivation for harnessing node related treat-
ment in xml or html files. Perhaps for using R, too. The image detour
begins with excluding html symlinks by append()’ing Sys.readlink()
positives from the html file list acquired by list.files() in a length()
for(){} loop.� �
listHtml <- list.files(path=www, recursive=TRUE,

pattern="[.][hH][tT][mM][lL]?$");
# sort out symbolic links
del <- NULL;
for (i in 1:length(listHtml)) {

del <- append(del,Sys.readlink(listHtml[i])!="") }
listHtml <- listHtml[!del]� �

In the reduced file list

htmlParse() prepares for node extraction of src attributes by
getNodeSet(). The xpath checks for <img> elements with src
attributes which do not begin with ../img/ or http.

sub() replaces the first occurrence of its search pattern with the
relative path to the parallel img/ folder. The assignment oper-
ator sets the value for the src attribute.

saveXML() copies the modified external pointer collection to the
current html file.� �

for (i in 1:length(listHtml)) {
duc <- XML::htmlParse(listHtml[i]); # str(duc)
imgNode <- XML::getNodeSet(duc, "//img[ not ( starts-with(@src,
↪→’../img/’) ) or not ( starts-with(@src, ’http’) ) ]");
li <- length(imgNode);
if(li>0) { for (j in 1:li) {

https://rdrr.io/cran/XML/man/xmlClone.html
https://rdrr.io/r/base/append.html
https://rdrr.io/r/base/Sys.readlink.html
https://rdrr.io/r/base/list.files.html
https://rdrr.io/r/base/length.html
https://rdrr.io/r/base/Control.html
https://rdrr.io/cran/XML/man/xmlTreeParse.html
https://rdrr.io/cran/XML/man/getNodeSet.html
https://rdrr.io/r/base/grep.html
https://rdrr.io/cran/XML/man/saveXML.html


11.4 Image Handling 43

XML::xmlAttrs(imgNode[[j]])["src"] <-
sub("[A-Z/ a-z.-]+/img/","../img/",

XML::xmlAttrs(imgNode[[j]])["src"]) }
dummy <- XML::saveXML(duc,listHtml[i]) } }� �

11.4.2 Collect Media

Same selection process as in the previous section for the html
files with the objective to skip symbolic links.� �
listHtml <- list.files(path=www, recursive=TRUE,

pattern="[.][hH][tT][mM][lL]?$");
del <- NULL;
for (i in 1:length(listHtml)) {

del <- append(del,Sys.readlink(listHtml[i])!="") }
listHtml <- listHtml[!del]� �
Read the src and data attributes in <img> and <object> ele-
ments, respectively, by applying getHTMLExternalFiles() and
append()’ing them to the img collection. The attribute xpQuery
of getHTMLExternalFiles() is an xpath expression and
defaults to c("//img/@src", "//link/@href", "//a/@href",
"//script/@href", "//embed/@src").� �
img <- NULL;
for (i in 1:length(listHtml)) {

duc <- XML::htmlParse(listHtml[i]); # str(duc)
xpq <- c("//img/@src", "//object/@data");
img <- append(img,XML::getHTMLExternalFiles(doc=duc,
↪→xpQuery=xpq));

}� �
Note that the image paths derived from the orgRoot variable pub
contain a symlink

unique() the image paths and remove the http paths with a
grep() selector� �
uImg <- unique(img);
pImg <- uImg[grep("^http",uImg,invert=TRUE)]� �

https://rdrr.io/cran/XML/man/getHTMLLinks.html
https://rdrr.io/r/base/append.html
https://rdrr.io/cran/XML/man/getHTMLLinks.html
https://rdrr.io/r/base/unique.html
https://rdrr.io/r/base/grep.html


44 11 TEST, ONE, TWO, THREE

construct the source and the target path for the images with a
sub() selector and file.path()

check for changed image files with file.exists() and md5sum()
– assuming that (1) all file paths begin with "../img/" and (2)
the Web site only has one level of folders – and overwrite them
with file.copy() if necessary

check for new image files and copy them with folder check
employing dirname(), dir.create(), dir.exists(), and
file.copy().

� �
for (j in 1:length(pImg)) {

cImg <- sub("^[.][.]/","",pImg[j]);
fPic <- file.path(www, cImg);
fPub <- file.path(pub, cImg);
if (file.exists(fPic)) {

sPic <- tools::md5sum(fPic);
sPub <- tools::md5sum(fPub);
if(sPic!=sPub) {

file.copy(fPub, fPic, overwrite=TRUE) }
} else {dPic <- dirname(fPic);

if(!dir.exists(dPic)) {
dir.create(dPic,recursive=TRUE,mode="0755"); }

file.copy(fPub, fPic); } }� �
11.4.3 Hidden Agenda for Images

My method doesn’t include svg files; they would be found by look-
ing for the data attribute in an <object> element.� �
objDat <- XML::getNodeSet(duc,"//object/@data"); # str(objDat)� �

That’s because I didn’t find a proper way to address backend specific
image production. I’d prefer pdf for latex and svg for html, but as
long I can’t figure it out, I’ll stay with png for both.

I’m still working on inclusion of my favourite latex tikz candidate
for infographics, for situations where R’s graphics solutions graphics,
lattice or ggplot2 are too tedious to design. But this approach went
into competition with asymptote and gnuplot. Or plantuml and

https://rdrr.io/r/base/grep.html
https://rdrr.io/r/base/file.path.html
https://rdrr.io/r/base/files.html
https://rdrr.io/r/tools/md5sum.html
https://rdrr.io/r/base/files.html
https://rdrr.io/r/base/basename.html
https://rdrr.io/r/base/files2.html
https://rdrr.io/r/base/files2.html
https://rdrr.io/r/base/files.html
https://rdrr.io/r/#graphics
http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=ggplot2


11.4 Image Handling 45

pure graphviz solutions. Except for latex tikz I’ve set up org
babel blocks for these graphics tools to put them up for experimental
trials.

The backend specificity also applies to tables, but the org solution
in this case is much more advanced. It even expands to an amazing
ascii mode spreadsheet feature, which might be the sole reason to turn
into an org mode monk.

The change log of org mode offers a new procedure of backend
independent one for all solution, i.e., svg.

“org babel now uses a two-stage process for convert-
ing latex source blocks to svg image files (when the
extension of the output file is .svg). The first stage
in the process converts the latex block into a pdf file,
which is then converted into an svg file in the second
stage. The tex → pdf part uses the existing infrastruc-
ture for org-babel-latex-tex-to-pdf. The pdf → svg
part uses a command specified in a new customization,
org-babel-latex-pdf-svg-process. By default, this uses
inkscape for conversion, but since it is fully customizable,
any other command can be used in its place. For instance,
dvisvgm might be used here. This two-part processing
replaces the previous use of htlatex to process latex di-
rectly to svg (htlatex is still used for html conversion).

Conversion to svg exposes a number of additional cus-
tomizations that give the user full control over the contents
of the latex source block. org-babel-latex-preamble,
org-babel-latex-begin-env and
org-babel-latex-end-env are new customization options
added to allow the user to specify the preamble and code
that preceedes and proceeds the contents of the source
block.”

— New options and new behavior for babel LATEX SVG
image files change log entry for version 9.5, accessed

2022-07-26.

https://www.orgmode.org/Changes.html#org055ebbf


46 12 WHAT’S MORE

12 What’s more

For me one of the most intriguing aspects of Internet pages is their
cloaking mechanism for links. They hide all their ingenuity behind
clickable words. And the most the reader can expect from the design
of a complete Web site is a cloud of tags, maybe even categorized,
but in the worst case automatically generated. On the other hand the
digital high performance machines could produce a table of contents,
prematter, backmatter, footnotes, captions, indices, and biblographies
which are the main source of quickly getting an informed impression
of the content and to acknowledge the external contribution of larger
documents. For reintroducing these features in a cms we would have to
browse through a jungle of extensions and fill a multitude of database
tables.

Another unpleasing feature of the blogging mainstream is the reduc-
tion to linear storylines. New css features and increasing integration
of svg are on their way but even with the old css the user drowns
in a sea of configurations. For the creation of something in the range
of o’Reilly’s Head First series the author is urged to employ a whole
industry of publication professionals. In this regard org mode and its
emacs base can offer their embracing features, as Niesson’s example
shows.

For me it’s important to use a tool which offers a starting point for
perfect latex and html and texinfo exports, instead of reduced ap-
proaches like rstudio-markdown-html-rshiny or latex-sweave-
pdf. Of course, the configuration efforts will increase, because I’m deal-
ing with different media or formats; with different concepts. imho that
should be the real realm of responsive design discussions; or barrier-free
access, to use a term that deals with people instead of devices. I can’t
produce a proper pdf from a html markdown, nor can I produce
an animated html page from dvi latex. While it might be a proper
idea to produce a page oriented beamer presentation from latex; or
to transform a tikz portable graphics format14 to svg.

14tikz is a parallel production of the beamer guy Tantau. tikz includes anima-
tion. A rapid slide show can be marked as the transition state to a motion picture.
That’s where I dare to compare tikz to svg.



12.1 Publishing Hooks 47

With regard to the simple example I’ll sketch some expansions into
a “what’s next” agenda.

Section 12.1 collects publishing functions, pre and post processors
in org publish. And it introduces emacs shell escapes, because
I render them the first candidates for my experiments in elisp.
Section 12.2 is about extracting information from an org file and
its latex or html exports; or rss or texinfo. Introduction to
xml node retrieval and manipulation. The outline covers bibli-
ography, index, and list of figures.
Section 12.3 discovers the chain: selection of files → Web site →
site map, rss → content management → information architec-
ture.
Section 12.4 reviews my ideas about html templates for Web site
structure
Section 12.5 offers my favourite deployment scenarios without
naming many other failures
Then in Section 12.6 I conclude the whole document with the
spirit of my endeavor by comparing it to Berners-Lee’s amaya
vision.

12.1 Publishing Hooks

Apart from the :publication function which already can be a list
of functions I identified three injection methods for publishing hooks.15

The main publishing hooks are called :preparation-function and
:completion-function; The corresponding Manual entry tells us that
“functions listed in these properties are to be called before starting [or
after finishing] the publishing process, for example, to run make for
updating files to be published [or change permissions of the resulting
files]. Each function is called with a single argument: the project prop-
erties list.” I’ve no idea what the single argument project properties
list means. For getting ideas I sketched Ogbe’s [16] usage of pre- and
postprocessors in Section 13.1.7.

15For now I can only guess their usage. My work-around is to use R for all the
programmatical purposes in a semi-manual deployment scenario. elisp intelligence
postponed.

https://orgmode.org/manual/Sources-and-destinations.html


48 12 WHAT’S MORE

The function list org-publish-after-publishing-hook is another
spot for getting information; it’s called in org-publish-file which is
part of org-publish-projects and org-publish-current-file. The
default arguments are the source and the target file paths.

For me the syntax for an elisp shell call on emacs level might
be the entry to elisp programming. Such a shell call looks like
(shell-command "ls"). In Table 4 I sorted the set of related defi-
nitions and commands into short and longer commands and removed
their common prefix shell-command-.

Table 4 – emacs shell escapes in elisp without the preceding
shell-command-.

completion saved-pos -save-pos-or-erase dont-erase-buffer
history sentinel -set-point-after-cmd separator-regexp
on-region switch completion-function with-editor-mode
regexp to-string default-error-buffer

For asynchronous calls – which don’t block the whole
emacs instance – there are commands like start-process or
start-process-shell-command; see Xah Lee’s Elisp: Call Shell
Command [10] at xahlee.info or the whole subr.el with the basic
elisp subroutines.

Ogbe’s [16] usage of a shell command regards CSSTidy, sketched in
Section 13.1.

12.2 Index Toc Tag Category Bibentry Link-List

Two of my next steps begin as a matter of the individual post. The
first one is already realized on this volatile example site

harness the bibtex run of pdflatex combined with bib-
tex2html and the by-product of a supplemental pdf
extract the html reference attributes href of the anchors <a>.
Sort and unique them.

The full line of “self reference” approaches begins with the table of
contents, the list of figures or tables, and indexes; next we can add
appendices with all kind of specific supplemental information, usually
arranged in a back matter part, or the content related information of

http://xahlee.info/emacs/emacs/elisp_call_shell_command.html
http://xahlee.info/emacs/emacs/elisp_call_shell_command.html
http://csstidy.sourceforge.net/
http://www.lri.fr/~filliatr/bibtex2html
http://www.lri.fr/~filliatr/bibtex2html


12.2 Index Toc Tag Category Bibentry Link-List 49

the pre-matter. What about mini tocs, footnotes, endnotes, examples,
theorems, definitions, exhaustive info boxes or other boxes for warnings,
hints, notes? The LATEX Companion [12] dedicates the first Chapter
The Structure of a LATEX Document to most of these meta informations.
The Subsection 3.3.3 amsthm – Providing headed lists, Section 3.3 List
structures in [12]’s Chapter 3 Basic Formatting Tools provides for more.
And o’Reilly’s Head First series shows the variety in non-math books.

Keeping track of all the references for the whole Web site is a major
task of the cms. Administrative tasks yield another field of applica-
tions. Both of them constructing their own display modules, just like
the mysql php combination of the global players. In the case of bib-
tex my coordinated org mode approach produced both a table for
the posted file and an additional bibliography file; and a pdf which is
not derived from the templated html export. I consider this a clean
start. And this wouldn’t be a What’s more section if it didn’t offer
more about bibtex, links, and “self scraping.”

12.2.1 BibTeX

To get started I only put up the resulting files for the bibliography
and the pdflatex compilation; see Section 11.2 for elaboration. To
step into “reproducible publication” I will have to provide

the folder structure needed for the latex compilation
a (reduced?) latex template with (reduced?) input files
the org macros in config.org, my setup file, together with the
corresponding latex macros and the elisp code for the macro
edits. I didn’t configure the latex compilation in org mode,
yet?, and the listings macros are still in the development cue, too.
There might be other solutions like latex’s minted related to
python’s pygments. For the html export org employs htmlize,
which reflects the current buffer theme.
my customized user entities as an elisp entry for the ~/.emacs
file.

https://www.ctan.org/pkg/amsthm
https://www.ctan.org/pkg/listings
https://www.ctan.org/pkg/minted
https://pypi.python.org/pypi/pygments
https://elpa.nongnu.org/nongnu/htmlize.html


50 12 WHAT’S MORE

Next step is to compare org-bibtex,16 reftex,17 ox-bibtex,18 the very
new19 org-citation, and external libraries like RefManageR or services
like zotero, which probably includes expanding to linked data. The
org-citation approach is done with contribution of Kitchin’s org-ref
which

“is an emacs-lisp module to handle bibliographic citations,
and references to figures, tables and sections [. . . and] was
written first for use in org-mode, and for reasonable export
to latex. It does not work well for any other export (e.g.
html) for now.”
— Using org-ref for citations and references a 2014-05-13
blog entry by Kitchin at kitchingroup.cheme.cmu.edu.

org-ref is an approach with Citation Style Language. Kitchin
doesn’t work with ox-bibtex or bibtex2html: “I don’t plan to use
bibtex2html in org-ref. It is not easy to install on Windows. The
approach org-ref will take is described here.” github org-ref issue 101,
2016-01-10. The version org-ref 2.0.0, accessed 2021-10-01, available
at melpa, requires dash-2.11.0, htmlize-1.51, helm-1.5.5, helm-bibtex-
2.0.0, ivy-0.8.0, hydra-0.13.2, key-chord-0, s-1.10.0, f-0.18.0, pdf-tools-
0.7, bibtex-completion-0 1.1.1.

For the acknowledgment aspect I’m using hints from Cite it Right
[8], Who Did What? The Roles of R Package Authors and How to Refer
to Them [9], and Free Software, Free Society [7].

12.2.2 Links and Indices

To extract the html anchors to several indices and to insert back
reference anchors could be another option. Here, my reference for in-
sertion is [15]’s Chapter 6 Generating XML. And perhaps I would have
to restructure the descriptive parts of my org links.

16According to a 2019-04-20 discussion issue at bibeltex, referring to the corre-
sponding git commit entry at code.orgmode.org org-bibtex.el was renamed
to ol-bibtex.el.

17Examine reftex-create-bibtex-file, reftex-cite.el or reftex.el
or the reftex Manual.

18Containing many org-bibtex-.. commands, but not part of gnu emacs)
19org version 9.5

http://CRAN.R-project.org/package=RefManageR
https://github.com/jkitchin/org-ref
http://kitchingroup.cheme.cmu.edu/blog/2014/05/13/Using-org-ref-for-citations-and-references/
https://citationstyles.org/
http://www.lri.fr/~filliatr/bibtex2html
http://kitchingroup.cheme.cmu.edu/blog/2015/12/11/Introduction-to-a-citation-processor-in-org-ref/
https://github.com/jkitchin/org-ref/issues/101#issuecomment-170372518
https://melpa.org/#/org-ref
https://github.com/ruediger/bibeltex/issues/2
https://github.com/ruediger/bibeltex
https://code.orgmode.org/bzg/org-mode/commit/499c0a50cc4b11e37b91374af23cb27ab8fc20d2


12.2 Index Toc Tag Category Bibentry Link-List 51

In my first long version I didn’t put every citation into a bibliog-
raphy link. I think the links to R functions or even Manual pages
should be part of a different info system. xpath mediated through
[15]’s Chapters 3 Parsing XML Content, 4 XPath, XPointer, and XIn-
clude, and Chapter 5 Strategies for Extracting Data from HTML and
XML Content sets the stage.

With this preparation I can compare the efforts

to setup a nltk crawler [2] for tagging and linked data meth-
ods [24] for categorization; the latter may be combined with rss
export discussed in Section 13.1.1.

of macro tagging, capturing, and the many org hyperlink versions,
which include archive, agenda, the whole org-as-a-note-taking sys-
tem

to manually enter the keys for the elaborated index mechanism
of the texinfo export,20 and the special index property for the
properties’ drawer of a headline: either render exported info files,
use pandoc, or regex in the org file source

to manually enter the keys for the org publishing feature of Gen-
erating an index

For the anchor’s href attributes there’s another challenge: book-
mark management. Ever run into http 404 of other pages? It hurts
even more frome the own pages. In 2008 I found joomla bookmarks
to be a major inspiration for this management; complemented by link-
agogo (still http, no s) and memotoo to collect firefox bookmarks
or ie favorites. Where memotoo also offers ideas for address and eMail
management, particularly the syncml background. They might be
thought to be outdated by pocket or reddit, but we all know that
these startup goodies quickly turn into price tagged data collectors; see
the del.icio.us to pinboard transformation.

For ideas about numbered theorems or examples see the pre-defined
macros in the org Manual’s Section Macro Replacement . It contains

20texinfo offers concept, function, key, #+PINDEX, #+TINDEX, and #+VINDEX,..

https://orgmode.org/manual/Generating-an-index.html
http://linkagogo.com
http://linkagogo.com
https://www.memotoo.com/
https://www.memotoo.com/
https://getpocket.com
https://www.reddit.com
https://pinboard.in
https://orgmode.org/manual/Macro-Replacement.html


52 12 WHAT’S MORE

the concept of custom counters in numbered theorems or examples or
exercises that can be produced by the pre-defined macro n(m,x).

In the forms n, n(NAME), and n(NAME,ACTION) this macro imple-
ments custom counters by returning the number of times the macro
has been expanded so far while exporting the buffer. You can create
more than one counter using different NAME values. If ACTION is "-"
the previous value of the counter is held, i.e. the specified counter is
not incremented. If the value is a number, the specified counter is set
to that value. If it is any other non-empty string, the specified counter
is reset to 1. You may leave NAME empty to reset the default counter.

For the construction of theorem environments in org I collected
four sources

worg entry org-special-blocks.el — turn blocks into LATEX envs
and HTML divs
stackoverflow entry org-mode special blocks latex attribute
github repository latexcss, a class-less css file which can be at-
tached to any html document to make it look like latex. It
combines LATEX Theorem-like Environments for the Web, Zachary
Harmany, 2013-01-17 at his octopress blog and a latex style
wikipedia css.

This might be useful on a single page. But for distributed pages
there has to be a linking idea like the one concatenating the html
version of a large book series by Julius O. Smith III. – presenting, for
example, Physical Audio Signal Processing. imho Smith’s solution is
not maintainable in that form. The discussion above could inspire other
approaches.

12.2.3 XML Tools for Attribution Retrieval

As we can see from Section 11.4 the html image elements can be
handled by xml node recognition. In this section I back up this practice
with Temple Lang’s statements about regEx not being a solid solution
for handling xml. As an exercise I invite the reader to my expedition
where I was looking for some background information of the media files
in the borrowed exercise layout and reasoned about license aspects.
Then I set the scene for another xml node based information retrieval
of license information with regard to latex’s list of figures mechanism.

https://orgmode.org/worg/org-contrib/org-special-blocks.html
https://emacs.stackexchange.com/questions/31681
https://github.com/davidrzs/latexcss
http://drz.ac/2013/01/17/latex-theorem-like-environments-for-the-web/
https://ccrma.stanford.edu/~jos/pasp/Book_Series_Overview.html
https://ccrma.stanford.edu/~jos/pasp/


12.2 Index Toc Tag Category Bibentry Link-List 53

Remember, the exercise layout was borrowed from selfhtml.org
(German) and stated as public domain; zip and preview (gooTrans)
provided. It belongs to an html intro called HTML Einstieg (html
Intro→ gT). The images needed for the exercise are from the zip. But
first some quotes about the xml node discussion.

“While we have not formally introduced the R functions for
working with xml content, it is useful to note that the rich
structure and formal grammar of xml makes it easy to work
with xml documents. For example, we can find all <email>
elements, or all <r:func> or <r:package> nodes. We can
even locate the <section> node in a book which is, e.g.,

within a chapter whose title contains the phrase social
network and
which has a paragraph with <r:code> that contains a
call to load the graph package.

These are significantly harder to do robustly with markup
languages such as latex or markdown since they do not
have formal grammars. Typically, people use line-oriented
regular expressions for querying such documents and so can-
not use the hierarchical context to locate nodes. This also
makes it much harder to programmatically update content.”

— Example 2-1 A DocBook Document of Section 2.3
Examples of XML Grammars in [15]’s Chapter 2 An

Introduction to XML, p.30

That’s a statement in the introductory chapter about xml. But it
really gets interesting when this memorandum is translated into action,
which is the topic of [15]’s Chapter 6 Generating XML.

“Parsing and querying xml is more difficult using regular
expressions than with an xml parser, and it is especially
challenging for html due to its often irregular or malformed
structure. With an xml parser, we can work with the tree
and individual nodes. We can query and modify nodes of
interest and adapt the tree. We can then serialize the result

https://src.selfhtml.org/kurse/html-einstieg.zip
https://src.selfhtml.org/kurse/html-einstieg/
https://src-selfhtml-org.translate.goog/kurse/html-einstieg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en
https://wiki.selfhtml.org/wiki/HTML/Tutorials/Einstieg
https://wiki-selfhtml-org.translate.goog/wiki/HTML/Tutorials/Einstieg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en
http://CRAN.R-project.org/package=graph


54 12 WHAT’S MORE

back to a string if we want, e.g., to write to a file. In other
words, creating xml content via string manipulation works
adequately, but we typically want to operate at a higher
level with nodes and trees. By parsing the string content,
we can continue to think in terms of working with tree and
node objects.”

— Section 6.1 Introduction: A Few Ideas on Building XML
Documents in [15]’s Chapter 6 Generating XML, p.184

Also as part of this xml editing chapter Temple Lang concedes that
direct text manipulation and regEx is sometimes useful. He enciphers
this into vectorized generation of XML.

“We have indicated that creating node objects and com-
bining them into trees using newXMLNode() and the other
functions is a good and robust approach to create xml con-
tent, and that creating xml by pasting strings together is
less robust and flexible. However, there are occasions when
string manipulation to create xml/html content is useful.
These are typically when we need to create many nodes
that have the same structure but with different values in
the content or attributes.”� �
?XML::newXMLNode� �
— Section 6.5 Vectorized Generation of XML Using Text
Manipulation in [15]’s Chapter 6 Generating XML, p.206

Unfortunately there’s much more to know before applying this ad-
vance information. Fortunately the book [15] provides the tools and
plenty of examples; see Section 12.2.2 for related chapters. Unfortu-
nately some of the examples are not accessible any more. In the quoted
section I also recommended to back up the studies by the usage of an-
other book [14] developed by practitioners of political sociology. They
provide a – still available – repository of their examples.

Or you can just follow my example in Section 11.4.1 and combine it
with the challenge sketched in the rest of this section, which reflects on

https://rdrr.io/cran/XML/man/newXMLDoc.html


12.2 Index Toc Tag Category Bibentry Link-List 55

the exercise layout from selfhtml.org (German) stated as public do-
main. The following block is related to the images in the corresponding
zip file.

Image License Investigation
From image-search.org I’m introduced to the insight that the
rocking chair, for example, needs the attribution� �
<a
↪→href="https://www.vecteezy.com/free-vector/rocking-chair">Rocking
Chair Vectors by Vecteezy</a>� �

The desk.svg is borrowed from the wikimedia commons
ryansdesk.svg. For the unused x-tree.jpg I followed an

image-search.org link to the bing engine which brings up the file
tree55.jpg at free-clip-art-images.net. For the hobel.svg

icon yandex – mediated by image-search.org again – found
similar sources at cleanpng.com, dlpng.com, pngwing.com, and
ya-webdesign.com, all of which claim personal usage only. I could
assume that the red point version at selfhtml is a selfhtml
product, but I wouldn’t provide the file as public domain. So, I
take three measures

switch the logo to an ugly handmade version hobel.png
unlink the rocking chair and Ryan’s desk – they don’t go well
with the style of the other images anyway
include the wikimedia commons attribution for the rest of
the media files.

As an additional measure I contacted Selfhtml e.V. for a statement
about their public domain statement; the chairman Scharwies con-
firmed this status.

Mr. Scharwies, since 2016 chairman of the ngo Selfhtml e.V. told
me that the exercise zip contains pictures, which are collected mainly
from wikimedia commons.

I can find most of the images in the category SVG Furniture at
commons.wikimedia.org. Based on the available information I’m con-
structing a check list to decide about the inclusion of the files.

filing-cabinet.svg is a copy Paul Robinson’s cabinet.svg

https://src.selfhtml.org/kurse/html-einstieg.zip
https://commons.wikimedia.org/wiki/File:Ryansdesk.svg
https://www.bing.com/images/search
https://www.free-clip-art-images.net/tree-clip-art/tree55.jpg
https://www.cleanpng.com/png-encapsulated-postscript-clip-art-woodwork-3045508/
https://dlpng.com/png/7266982
https://www.pngwing.com/en/free-png-twezo
https://ya-webdesign.com/image/plane-svg-stencil/2724324.html
https://creativecommons.org/use-remix/attribution/
https://src.selfhtml.org/kurse/html-einstieg.zip
https://commons.wikimedia.org/wiki/Category:SVG_Furniture
https://commons.wikimedia.org/wiki/User:Rfc1394
https://commons.wikimedia.org/wiki/File:Nuvola_filing_cabinet.svg


56 12 WHAT’S MORE

cabinet.svg → Matthias Scharwies’ Cabinet2.svg
dresser.svg → Seahen’s Dresser.svg
table.svg → Seahen’s Table.svg
cupboard.svg → Matthias Scharwies’ Cupboard.svg,
hobel.png my public domain contribution

Wikimedia Common URL RegEx Behavior
When handling the corresponding link I observe an interesting
org export effect. It occurs for links with a name tail that
looks – for regEx – like a file extension. For example the
url of the svg file entry at commons.wikimedia.org/wiki is

File:Nuvola_filing_cabinet.svg. While the file itself resides at
https://upload.wikimedia.org/wikipedia/commons/b/bf.

For org export both uri’s in the plain form [[URI]] look like
an svg, which for the first link results in� �
<object type="image/svg+xml" class="org-svg" data="https:// \
commons.wikimedia.org/wiki/File:Nuvola_filing_cabinet.svg">

Sorry, your browser does not support SVG.</object>� �
(The backslash is a manually inserted linebreak.) For the sec-

ond link this is the expected translation. But if I load a page
containing the translation of the first link the browser shortly tries
to embed the file as svg object and then immediately switches to
the ...cabinet.svg page at commons.wikimedia.org. If a page
contains multiple links like this the browser arrives at the last of
these wiki commons pages. This doesn’t happen when I include
the uri in a named link like [[URI][name]]; see the org Manual’s
Section Links in HTML export.

If I want to state a by-sa copyright for my own work the proposal
at creativecommons.org offers the code� �
<a rel="license"
↪→href="http://creativecommons.org/licenses/by.sa/4.0/">
<img alt="Creative Commons License" style="border-width:0"
src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png"/>

</a><br />This work is licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
↪→Commons

https://commons.wikimedia.org/wiki/User:MScharwies
https://commons.wikimedia.org/wiki/File:Cabinet2.svg
https://commons.wikimedia.org/wiki/User:Seahen
https://commons.wikimedia.org/wiki/File:Dresser.svg
https://commons.wikimedia.org/wiki/User:Seahen
https://commons.wikimedia.org/wiki/File:Table.svg
https://commons.wikimedia.org/wiki/User:MScharwies
https://commons.wikimedia.org/wiki/File:Cupboard.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://orgmode.org/manual/Links-in-HTML-export.html
https://creativecommons.org/choose/results-one?license_code=by-sa


12.2 Index Toc Tag Category Bibentry Link-List 57

Attribution 4.0 International License</a>.� �
When quoting another person’s work I can do it in situ or at a

central location, the list of figures; see Section 12.2 for more reference
lists. latex’s list of figures depends on floating figure environments or
manual \addtocontents{} and \addcontentsline{} entries. Usually
I would think of an org mode macro to translate the license infor-
mation to latex’s figure list commands and to the html code above.
The list of figure files of latex might then be combined with with
xml node retrieval of html media elements like <img>, <object>, or
<video>, which in turn can be pointed at the original site to parse
license information.

An example for accepted in situ quotation infos is provided by the
wikimedia commons entry How to Give Attribution. It recommends
the caption in Figure ?? for the example of a flickr source.

https://creativecommons.org/wp-content/uploads/2019/10/
38494602082_d135ee9c7c_k-768x432.jpg

How to attribute authors of the CC works will depend on whether
you modify the content, if you create a derivative, if there are multiple
sources, etc. But the caption in Figure ?? is supposed to be an ideal
attribution note because it includes the:

Title: “Furggelen afterglow”
Creator: “Lukas Schlagenhauf” – with a link to their profile page
Source: “Furggelen afterglow” – with a link to the original photo
on flickr
License: “CC BY-ND 2.0” – with a link to the license deed

The example above works for tedious in situ maintenance of a few
external contributions. It will show proper results for latex and html
export. The LATEX Companion [12] offers background information in
Section 2.3 Table of Contents Structures and expands thoroughly in
Chapter 6 Mastering Floats.

My example in Section 11.4.1 shows the node treatment in action
and [15]’s Chapter 6 Generating XML provides the tools for construct-
ing an html snippet comparable to the bibtex2html processes in
Section 11.2.2. Parsing the target uri’s for retrieving the information
is an option, if it’s worth the effort; there’s plenty to discover.

I wonder if the study of [3]’s Chapter 11 Emacs Lisp Program-

https://creativecommons.org/use-remix/attribution/
https://creativecommons.org/wp-content/uploads/2019/10/38494602082_d135ee9c7c_k-768x432.jpg
https://creativecommons.org/wp-content/uploads/2019/10/38494602082_d135ee9c7c_k-768x432.jpg
https://flickr.com/photos/lschlagenhauf/38494602082/
https://flickr.com/photos/lschlagenhauf/
https://flickr.com/photos/lschlagenhauf/38494602082/
https://creativecommons.org/licenses/by-nd/2.0/
http://www.lri.fr/~filliatr/bibtex2html


58 12 WHAT’S MORE

ming would put me into a position to turn the procedure into a
:publishing-function or begin with a hook; see Section 12.1. I’m
sure that emacs has some resonable access to libcurl, too. Duck-
Duck goes for Syohex’s emacs-curl and Xu Chun Yang’s curl-to-elisp.
But coming from the multiple options of Python’s Beautiful Soup or
nltk I’m happy to have arrived at a basic understanding of http with
the help of Temple Lang’s XML. Don’t hurry, be happy.

12.3 Select Files and Content

The short version example of this document is a one level Web
site. All html files are in the root. And for the example I imputed
a template. In the long version postings and structural files get their
own folder. But more content will raise the challenge of a further ex-
panded folder structure. There many options because the physical lo-
cation of the files doesn’t have to reflect the information architecture.
In this lookout section I’m collecting ideas for the implementation of
both folder and information structure. I’d consider Section 11 as the
generator for the second tangible product in this regard.

The fsfe Web site building shell scripts can help for identifying the
main topics of the issue. The approach of the fsfe team is to use and
painstakingly edit xml and xsl files for every purpose. Apart from the
discipline this measure takes it’s an absolutely transparent process. So,
by experimenting with Morville’s wireframe and blueprint design [13],
Chapter 12 Design and Documentation I can assume to get some flesh
on the bones of a structural skeleton.

That only regards the public elements of an information system. For
structuring a private or single person’s publication’s efforts my major
field of interest is to extract elements of my work to the publishing
stage. I think about

Publishing as a spotlight on an issue that is developed as the
part of a semi-finished book, or a categorized collection. This
can be mediated by org mode’s customizable select and ex-
clude tags. The css for these pages can be based on Niessen’s

readtheorg.org. The problem to explode the whole work into
single chapters or sections, in order to reduce the resource us-

https://github.com/syohex/emacs-curl
https://github.com/xuchunyang/curl-to-elisp
http://CRAN.R-project.org/package=XML
https://git.fsfe.org/FSFE/fsfe-website/src/branch/master/build
https://raw.githubusercontent.com/fniessen/org-html-themes/master/src/readtheorg_theme/readtheorg.org


12.3 Select Files and Content 59

age, might be addressed by manual selection, xml aftermath, or
texinfo procedures.

The structure for reusable parts probably deviates from this pat-
tern. It’s more like linking or referencing using linked data or
bibliographic methods.

For choosing sources of publication org publish first draws on con-
tents of the :base-directory with an optional :recursive t expan-
sion. The choice depends on the :base-extension which defaults to
org files. See [20]’s Section Glue HTML and Extract Images for an
expression to choose media files. The two properties :exclude and
:include deselect and select on a regEx or file basis, respectively; see
Section Selecting Files of the Manual’s Publishing Chapter.

File Selection History
The 2012-02-26 answer of cm2 to the 2011-03-07 stackoverflow
entry Customizing org-publish-project-alist offers hints for (1) delet-
ing an html file in the :publishing-directory if its counterpart
org file in the :base-directory is missing and (2) inserting the
css file link.

1. writing a :completion-function cm2 links to Rose’s worg
entry Publishing Tree menus for Org-files [21]. The func-
tion is derived from org-publish-org-sitemap and reads
a menu structure from a dedicated syntax and somehow
combines it with the auto-sitemap. According to cm2
the function “shows how to get property values for the
org-publish-project-alist.”

Opposed to that statement for me the main information in this
linked blog is to manually provide an intuitive syntax for the nec-
essary infos of a menu structure:

number of dots .. for the level
text .. for the menu text
link .. relative url for the link target
title .. either for a tab title or the article title, I guess

https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org43c580d
https://orgmode.org/manual/Selecting-files.html
https://stackoverflow.com/users/1034317/cm2
https://stackoverflow.com/questions/5214558


60 12 WHAT’S MORE

target .. probably the target modul, in joomla terms, of the
page, i.e., where to include the menu as margin tree or top or
bottom menu
expanded .. probably a switch for the initial viewing state of
the menu: expanded or collapsed.

2. for the css file link the user cm2 suggests

a file based #+STYLE: entry

a setup file inclusion like in the Tired of Export Tem-
plates Section of Rose’s worg entry Publishing Org-
mode files to HTML [22]. cm2 calls this “generate
generic template files for each level within the directory
tree.”

engaging an :preparation-function to call a shell
script. For example, by invoking the stream editor sed
with something like href="@MYLOC@/stylesheet.css" />.

The publishing scaffold below contains the idea of putting a sym-
bolic link of a file into the publishing folder. In the corresponding link
source the sections marked by SELECT_TAGS like the default :export:,
or everything but EXCLUDE_TAGS, default :noexport:, are extracted
for publishing; see the Export Settings Section in the Manual’s Ex-
porting Chapter and the doc-strings of org-export-exclude-tags or
org-export-select-tags.

The search options in file links combined with #+include:21 are
another source of inspiration. Or the concept of attachments.

For access to the absolute root of the finally deployed Web-
site we can employ the org buffer entry #+HTML_LINK_HOME:,
corresponding to org-html-link-home. And consult the doc-
strings of org-html-link-use-abs-url, org-html-home/up-format,
org-html-link-up.

In an html export something like
[[file:./r.org::#graph-mod][R Graphic Models]] is turned
into the html anchor

21See the Manual’s Section and the doc-string of
org-export--prepare-file-contents.

https://orgmode.org/worg/org-tutorials/org-publish-html-tutorial.html#org4fdd4a5
https://www.gnu.org/software/sed/
https://orgmode.org/manual/Export-Settings.html
https://orgmode.org/manual/Search-Options.html
https://orgmode.org/manual/Include-Files.html
https://orgmode.org/manual/Attachments.html


12.3 Select Files and Content 61� �
<a href="./r.html#graph-mod">R Graphic Models</a>� �

An ID search option like [[file:./rG.org::#ch1]] would include
the corresponding ID as href="./rG.html#ch1"; see Links in HTML
export and Publishing links . These references assume very disciplined
organizational measures, which are very hard to maintain in something
like blog entries. So I suppose the linking mechanism is designed for

index.html files which reflect the Web site structure.
Here’s a typical ill-structured tree of ideas about wiring the hard

disk to a publication folder by harnessing symlinks, org #+include:’s,
and org search options. The org files themselves can provide addi-
tional selection features like tags.

blog/

• index.org

• 2020-04-25.org symLink → relative/path/2/foo.org

• 2021-05-29.org symLink → rel/pa/2/bar.org

book/

• index.org

• lnx.org → /abs/path/2/00far.org

• rGraphMod.org contains

#+Include: "rel/pa/2/r.org::Graphical Models" :lines 2-

• xml.org contains [[file:.lnx.org][WebTech Cmd
Line]]

tuts/

• index.org

• sound.org contains

* sec 1
#+Include: "rel/pa/2/hlmhltz::#fourier" :lines 2-
** sec 1.2
#+Include: "rel/pa/3/physics::#wave" :lines 20-58
* sec 2
#+Include: "rel/pa/4/math::#axiom6" :only-contents

https://orgmode.org/manual/Search-Options.html
https://orgmode.org/manual/Links-in-HTML-export.html
https://orgmode.org/manual/Links-in-HTML-export.html
https://orgmode.org/manual/Publishing-links.html
https://orgmode.org/manual/Include-Files.html
https://orgmode.org/manual/Search-Options.html


62 12 WHAT’S MORE

• xml.org contains [[file:blog/2020-04-25.org][Insight]]
and [[file:book/lnx.org::#apx2][Data]]

index.org
The real files in this tree, opposed to the symlinks, would contain the

Web site structure. I can think of three already available mechanisms
for automatic registration of the symlinks and population of the index
files

For every publishing project we can utilize the :sitemap-..
properties triggered by :auto-sitemap t; see Section Generat-
ing a sitemap. The default sitemap procedure generates a plain
list of links to all files in the project, and can be customized by
:sitemap-function.

The un’manual’ed rss feature of org publish works with the
:publishing-function (org-rss-publish-to-rss). Its doc-
string leads to ox-rss.el. So basically it seems to be designed
as an export feature. Well, org publish itself is also integrated in
the ox- elisp family. For the rss feature see Blogging from GNU
Emacs a 2013-09-25 blog entry by Bastien Guerry at bzg.fr.

The publishing index generator, already discussed in Section
12.2.2.

Diving into theoretical aspects of information architecture can be
a distracting mental training effort; see Section 11 for practice. I’ll
just add one thought about long documents: if I happen to produce
very long blogs I’d have to think about splitting the pages. There
are css solutions for pagination, but I prefer structural splitting. The
explosion to small chapters or sections might be solved by texinfo
html exports. I’m talking about texinfo features, not org mode
exports; they might already be integrated into org mode or emacs
like htlatex for interpreting latex snippets for org mode html
export.

12.4 Template Development

The combination of exports and the template is part of the image
collection code in [20]’s Section Glue HTML and Extract Images , but

https://orgmode.org/manual/Site-map.html
https://bzg.fr/en/blogging-from-emacs/
https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org43c580d


12.4 Template Development 63

there are other options for the expansion of the export files:

produce templates by a combination of org mode’s noweb,
tangling and export features. And add customized features with
any favorite programming language.

replace designated locations with corresponding modules, using R
XML’s node editing features, explained in [15]’s Chapter 6 Gen-
erating XML.

design the template in html cut it in pieces and linux-cat it
around the org export to build a Web site page

the utilization of a cdn feature like netlify’s File-Based Con-
figuration is already mentioned in [20]’s Section Glue HTML Ex-
panded .

see Ogbe’s blog for another template idea using :html-preamble
my-blog-header and :html-postamble ,my-blog-footer for
inserting the header and the footer

XTiger Language Specification; see Templates in Amaya at
w3.org.

Building an Automatic Template System in [3]’s Chapter 11
Emacs Lisp Programming

employing Daniel Pfeiffer’s emacs skeleton. Interesting for usual
edits – or for interactive template construction? See emacs Man-
ual Chapter Commands for Human Languages and the indepen-
dent info file about Autotyping .

For the org mode approach the first idea is the most attractive one.
Just like Niessen’s css tool it offers a self documenting environment for
template development. This procedure is sketched in [20]’s Section Glue
HTML Expanded . The template code with the noweb reference is not
a valid html document, but this is solved in the short example by a
previous tangling procedure. I still can’t escape the short R code in
Section 11.3.3. Perhaps I have to think it as elisp solution? As a elisp
not-even-rookie?

http://CRAN.R-project.org/package=XML
https://docs.netlify.com/configure-builds/file-based-configuration/
https://docs.netlify.com/configure-builds/file-based-configuration/
https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org67dfb01
https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org67dfb01
https://www.w3.org/Amaya/Templates/Overview.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text.html
https://www.gnu.org/software/emacs/manual/html_mono/autotype.html
https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org67dfb01
https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org67dfb01


64 12 WHAT’S MORE

Why worrying about tangling, nowebbing, whatever? I can just cut
the template file into – in this simple case – two pieces, put the export
in between, and save it in my local upload folder. With the linux cat
command this process looks like� �
cat tmplt1.html index.html tmplt2.html > ~/www/shtm0/index.html� �

Maybe it’s also helpful to know that linux commands can work
with the standard input represented by a dash� �
cat index.html | cat tmplt1.html - tmplt2.html > ~
↪→/www/shtm0/index.html� �

With these commands at hand the fusion of the web pages would be
part of a bash script. Which can be included in and triggered from an
org file source code block. But my horizon didn’t evolve to the bash
script loop skills, yet.

For my skills it still is easier to stick to R. But it seems to be kind of
a handicap, too. The code for the short version is part of [20]’s Section
Glue HTML and Extract Images , the long version is offered in Section
11.3.

12.5 Netlify Alternatives

A cost-effective solution within netlify could be the netlify
command line interface; see Get started with Netlify CLI entry at
docs.netlify.com. The billing system of netlify involves build min-
utes for automatic deployments via github or gitlab repositories. As
far as I deciphered the netlify cli process it employs manual deploy-
ments from a local git repository, which doesn’t count for billing. This
approach should even work for collaborative configurations.

wordpress offers a xmlrpc interface that works with free ac-
counts, while the rest api is for the paid plans only. The xmlrpc
approach is sketched in [15].22 But it consumes much effort for serv-
ing serialization, tagging, media upload and the whole cms structure,
while resulting just in a blog entry with tags. The free version, for

22Subsection 11.3.1 Programmatically Accessing a Blog, Section 11.3 Writing R
Functions to Use XML-RPC in [15]’s Chapter 11 Simple Web Services and Remote
Method Calls with XML-RPC.

https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org43c580d
https://docs.netlify.com/cli/get-started


12.6 Weaving Amaya 65

example, doesn’t provide mathjax support. Nonetheless the xml-
rpc interface invites to examine related blogging giants like google’s
blogger sphere.

Then there are some media sites like medium.com; unfortunately the
mathjax restriction also counts for medium.com, but at medium.com
they offer a free rest api.

Anyway it’s not an option to point out the currently 10 best host-
ing solutions, because they already changed when such an endeavor is
finished.

12.6 Weaving Amaya

By working out the details of my next publications steps I began to
see connections to the Amaya project documented at w3.org. The cor-
responding mail archive ended in 2010, if I dare to neglect four outliers
until 2014. imho amaya was the most central project of the World
Wide Web and it drowned in the sea of knowledge it was supposed to
discover. I think org → emacs → gnu linux has the tools for a
revival, but there’s no reason to focus on the Internet. The Web is just
another medium. The main objective is information architecture. And
to be reliable it has to be freely accessible, that’s the realm of the Free
Software Foundation, which in turn is deeply ingrained in the same
gnu linux environment. The content of the short version of this blog
describes one possible workflow for the first steps; with the following
quotes I invite the reader to draw connections from the second long
version to amaya.

For shifting the focus away from the Internet the corresponding
toolbox won’t be an all including software in a browser; it’s not helpful
to interpret any information-related topic in terms of Web technology.
The real challenge is to make the Internet available as the democratic
medium it was designed for. The amaya project was aimed at this
target, so I find it helpful to sketch the motivation and environment for
amaya presented in Weaving the Web [1].

annotea, xtiger and the amaya documentation deliver the spec-
ifications for a single Web site. The last chapter of [1], Information
Management: A Proposal, delivers the specification for the World Wide
Web presented in 1989 and 1990. And here are the book parts men-

https://www.w3.org/Amaya/
https://lists.w3.org/Archives/Public/www-amaya-doc/
https://www.w3.org/2001/Annotea/
https://www.w3.org/Amaya/Templates/
https://www.w3.org/Amaya/User/Overview.html


66 12 WHAT’S MORE

tioning the amaya project. First it’s about inria as a connecting link
between grif, arena, and amaya:

“cern’s resignation left the consortium without a European
base, but the solution was at hand. I had already visited the
Institut National de Recherche en Informatique et en Au-
tomatique (inria), France’s National Institute for Research
in Computer Science and Control, at its site near Versailles.
It had world-recognized expertise in communications: their
Grenoble site had developed the hypertext browser/editor
spun off as grif that I had been so enamored with. Fur-
thermore, I found that Jean-François Abramatic and Gilles
Kahn, two inria directors, understood perfectly well what
I needed. inria became cohost of the consortium. Later, in
early 1996, we would arrange that Vincent Quint and Irene
Vatton, who had continued to develop grif would join the
consortium staff. They would further develop the software,
renamed amaya, replacing arena as the consortium’s flag-
ship browser/editor.”

— Weaving the Web [1], Chapter 8 Consortiuum p.101f

Then some explanations about the tasks of amaya; to me they just
sound like bluefish or geany.

“In 1996 we negotiated the right to the grif code from
inria and renamed it “Amaya.” It is designed completely
around the idea of interactively editing and browsing hyper-
text, rather than simply processing raw incoming html so
it can be displayed on the user’s screen. amaya can display
a document, show a map of its structure, allow the viewer to
edit it, and save it straight back to the Web server it came
from. It is a great tool for developing new features, and for
showing how features from various text-editing programs
can be combined into one superior browser/editor, which
will help people work together. I switched from aolpress
to amaya.”

— [1]’s Chapter 9 Competition and Consensus, p.119f

https://bluefish.openoffice.nl
https://www.geany.org


12.6 Weaving Amaya 67

Towards the end of the book, it develops to a dense multitasking
environment with immense integration needs. Even if it just touches the
usual markup languages. And for collaborative work the book mentions
jigsaw.

“We are only in the early stages, but we now have an
environment in which people who are collaborating with
the consortium write and edit hypertext, and save the re-
sults back to our server. amaya, the browser/editor, han-
dles html, xml, Cascading Stylesheets, Portable Network
Graphics, and a prototype of Scalable Vector Graphics and
Math ML. While we have always developed amaya on the
linux operating system, the amaya team has adapted it
for the windows nt platform common in business, too. I
now road test the latest versions of these tools as soon as I
can get them, sending back crash reports on a bad day and
occasionally a bottle of champagne on a good one.

We are using our open source java-based server, jigsaw,
for collaborative work. For example, jigsaw allows direct
editing, saves the various edited versions of a document,
and keeps track of what has been changed from one version
to the next. I can call up a list of all versions, with details
about who made which changes when, and revert to an older
version if necessary. This provides everyone with a feeling
of safety, and they are more inclined to share the editing
of a piece of work. jigsaw and amaya allow our team
space to come alive as our common room, internal library,
and virtual coffee machine around which staff members who
are in France, Massachusetts, Japan, or on an airplane can
gather.

Making collaboration work is a challenge. It is also fun,
because it involves the most grassroots and collegial side of
the Web community. All Web code, since my first release in
1991, has been open source software: Anyone can scoop up
the source code – the lines of programming – and edit and
rebuild them, for free. The members of the original www-



68 12 WHAT’S MORE

talk mailing routinely picked up new versions of the origi-
nal Web code library “libwww.” This software still exists on
the consortium’s public server, www.w3.org, maintained for
many years by Henrik Nielsen, the cheerful Dane who man-
aged it at cern and now mit. libwww is used as part of
amaya, and the rest of amaya and jigsaw are open source
in the same way. There are a lot of people who may not be
inclined to join working groups and edit specifications, but
are happy to join in making a good bit of software better.
Those who are inspired to try amaya or jigsaw, want to
help improve them, develop a product based on them, or
pick apart the code and create an altogether better client
or server can simply go to the w3.org site and take it from
there, whether or not they are members of the consortium.”

— [1]’s Chapter 12 Mind to Mind, p.170f

The annotea specifications are easily contained within org mode
hyperlinks and necessarily separated from the rss export. And I think
inventions like bookmarklets or annozilla are outdated by linked data.

I can see many initiatives which are willing to invest the effort for
generating informed decisions without outsourcing the reasoning to so
called professionals linked to institutions of excellence. I might be on
the way to offer proper tools; I’ll see if they deliver the intended freedom
for my purpose chain thought → word → act.

“Who’s got the privilege to know, has the duty to act.”

— According to a 2021-09-08 post at
thewisdomofpeople.com Jill S. Baron attached this

quote, in a slightly different form, to Alberst Einstein in
the Preface to Rocky Mountain Futures: An Ecological

Perspective (Washington: Island Press, 2002)

No matter if Einstein said it, the duty to act depends on the words
which communicate the thoughts into action. The idea of putting
thoughts into words before acting on them is one essential step in hu-
man relations. It also acts as a buffer. So putting it into an emacs
buffer is definitely a good start.

https://www.w3.org/2001/Annotea/
https://www.thewisdomofpeople.com/post/einstein-those-who-have-the-privilege-to-know-have-the-duty-to-act


69

13 Appendix

I just offer Supplemental Material for the carpenter’s Web site as-
similation [20]. The files for the construction of the advanced rookie
site are listed in Figure 4 and their purpose is illustrated in the What’s
More Section 12.2.1. It’s because in the current state of transition the
files contain too much outdated approaches.

Apart from the linux kernel the System Information of [20] is also
the same in the long version. The carpenter supplements are still avail-
able at https://bitbucket.org/StPjotr/shtm0.

To get leads about my further steps I annotated Ogbe’s publishing
process [17] with my interpretations.

13.1 Ogbe’s Website Construction

Ogbe uses xhtml for org export to html. In the hidden blog
entry My Emacs Configuration [17] Ogbe offers structured insight into
inspiring working space preparations; hidden because there’s only a link
from an “official” blog entry available from his menu item blog ; and it
is linked from other hidden and blog -listed entries. This hidden entry
spreads into numerous Components, i.e., also hidden entries, like Org ,
Snippets , Completion, or References . And it contains an Exporting
Section which explains [17]’s publishing process. The Section HTML
Export in the hidden Org component offers offline export tweaks for
local org html exports.

So, the most central information for my purpose of reconstructing
Ogbe’s construction work is in the unhidden blog post Blogging using
org-mode [16]. I figured some features to act as an elisp crash course
for me. And for myself I marked some which surpassed my rookie
horizon. The folder structure for the publishing lists blog-articles,
blog-pages, and blog-rss is summarized in Table 5. The different
publishing actions are

org-html-publish-to-html for articles and pages
org-rss-publish-to-rss for rss
org-publish-attachment for resources, images, and downloads.

The site contents are articles, pages, and hidden entries; the re-
sources are images, two css files, and plenty of download files. Most

https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org04369c9
https://pjs64.wordpress.com/2022/04/08/org-2-shtm0-eazy/#org58b9b40
https://bitbucket.org/StPjotr/shtm0
https://ogbe.net/emacs/emacs.html
https://ogbe.net/blog/emacs_redux.html
https://ogbe.net/emacs/org.html
https://ogbe.net/emacs/snippets.html
https://ogbe.net/emacs/completion.html
https://ogbe.net/emacs/references.html
https://ogbe.net/emacs/emacs.html#Exporting
https://ogbe.net/emacs/org.html
https://ogbe.net/blog/blogging_with_org.html
https://orgmode.org/manual/Publishing-action.html


70 13 APPENDIX

of the download files are found in the News Section of the home page.
The alist entry of whole blog’s publishing components is� �
(setq org-publish-project-alist ‘(("blog" :components (

"blog-articles", "blog-pages", "blog-rss",
"blog-res", "blog-images", "blog-dl"))� �

Table 5 – The folders for articles and pages processed by
org-html-publish-to-html; for rss by org-rss-publish-to-rss.
All base directories begin with ~/repos/blog/. Yes, the blog articles’
and rss’s source folder is ~/repos/blog/blog/. All publishing directories
begin with ~/repos/blog/www/.

articles pages rss

:base-directory blog/ pages/ blog/
:publishing-directory blog/ . .
:base-extension "org" "org" "org"
:exclude – – ".*"
:include – – ("blog.org")
:html-link-up "" ""
:html-link-home "/", "" "/", "" "https://ogbe.net"
:html-link-use-abs-url – – t

Before getting into the article-page-sitemap production I shortly
deal with the files which are copied only; their common
:publishing-function is org-publish-attachment. The image and
the download folder img/ and dl/ are copied recursively, the re-
sources folder res/ employs my-blog-minify-css; see Table 6.

Table 6 – The folders org-publish-attachment files. All base di-
rectories begin with ~/repos/blog/, all publishing directories with

~/repos/blog/www/.

res img dl

:base-directory res/ img/ dl/
:publishing-directory res/ img/ dl/
:base-extension ".*" ".*" ".*"
:completion-function my-blog-minify-css
:recursive – t t

https://ogbe.net/index.html#News
https://ogbe.net


13.1 Ogbe’s Website Construction 71

my-blog-minify-css restructures all css files, i.e., code.css and
main.css at the :publishing directory, with� �

csstidy --template=highest --silent=true� �
The elisp code is shown at length at the How to Blog.. [16] para-

graph beginning with “The next preprocessor runs CSSTidy. . . ”

13.1.1 Publishing Action

The central rss constructor is org-rss-publish-to-rss from the
non-gnu ox-rss.el, while the articles and the pages are made by� �
:publishing-function org-html-publish-to-html
:htmlized-source t ;; this enables htmlize, which means that I can
↪→use

;; css for code!� �
:htmlized-source is a switch for exporting original org files. The

Section Publishing Action in the org Manual says:

“If you want to publish the original org file with the
archived, commented and tag-excluded trees removed, use
the function org-org-publish-to-org. This will produce

file.org and put it in the publishing directory. If you
want a htmlized version of this file, set the parameter
:htmlized-source to t; this will produce file.org.html
in the publishing directory.”

On the other hand enabling “htmlize, which means that I can
use css for code” is controlled by org-html-htmlize-output-type
and an integral part of every org html export procedure,
which is also used to html’ize an original org file by
org-org-publish-to-org with :htmlized-source switched on. The
choices for org-html-htmlize-output-type are

css to export the css selectors only
inline-css to export the css attribute values inline in the
HTML as <style> elements
nil to export plain text.

http://csstidy.sourceforge.net/
https://orgmode.org/manual/Publishing-action.html


72 13 APPENDIX

Both depend on the current buffer theme, which makes them use-
less23 for batch mode exports and sensitive to collaborate editing.
org-html-htmlize-generate-css produces a buffer with all current
rich font definitions which we can use as a source for fixed class defi-
nitions. But the intention of “I can use css for code” still depends on
the choice for org-html-htmlize-output-type.

13.1.2 Head

Define my-blog-extra-head as a string� �
(setq my-blog-extra-head

(concat
"<link rel=’stylesheet’ href=’/../res/code.css’ />\n"
"<link rel=’stylesheet’ href=’/../res/main.css’ />"))� �
Both the blog-articles and the blog-pages publishing list con-

tain� �
:html-link-home "/" :html-viewport nil
:html-head nil :html-head-extra ,my-blog-extra-head
:html-head-include-default-style nil
:html-head-include-scripts nil� �

The :html-link-home property is set twice in Ogbe’s script; further
down both link up and home are set to an empty string which means
that :html-link-up/home-format isn’t included. afaik the latter gets
preference but I can’t remember where I found that statement.

The usage of the two properties :html-head and
:html-head-extra: is imho equivalent to� �
:html-head ,my-blog-extra-head� �

The property :html-head-include-scripts only regards the
script template org-html-scripts containing code highlighting func-
tions, i.e., “basic javascript that is needed by html files produced
by org mode.”24

23This is my interpretation of the org-html-htmlize-output-type doc-string.
Not experimentally verified.

24Manual’s Section JavaScript supported display of web pages.

https://orgmode.org/manual/JavaScript-support.html


13.1 Ogbe’s Website Construction 73

Whatever that means, it doesn’t apply to neither mathjax nor
Sebastian Rose’s org-info.js enabled by org-html-use-infojs; see
the Manual’s Section JavaScript supported display of web pages or the
worg entry Emacs org-info.js.

13.1.3 Mathjax

MathJax usually recommends to use their cdn to load their
javascript code; org supports this feature by setting up the con-
figuration template org-html-mathjax-template. This template is
fed by org-html-mathjax-options or an in buffer setting like

#+HTML_MATHJAX: align: left indent: 5em tagside: left font: Neo-Euler

See the docstring of org-html-mathjax-options for detailed expla-
nations of the keywords and or the customization buffer for accepted
values. Ogbe’s choice is to

use a local version and the configuration
TeX-AMS-MML_HTMLorMML instead of the org de-
fault TeX-AMS_HTML; see Combined Configurations at
docs.mathjax.org� �
(setq my-blog-local-mathjax

’((path
↪→"/res/mj/MathJax.js?config=TeX-AMS-MML_HTMLorMML")

(scale "100") (align "center") (indent "2em") (tagside
↪→"right")
(mathml nil)))� �

and to feed it into his own template defined literally in
blog-articles and blog-pages publishing properties� �
:html-mathjax-options ,my-blog-local-mathjax
:html-mathjax-template "<script type=\"text/javascript\"
↪→src=\"%PATH\"></script>"� �

https://orgmode.org/manual/JavaScript-support.html
https://orgmode.org/worg/code/org-info-js
https://www.mathjax.org/
https://docs.mathjax.org/en/v2.7-latest/config-files.html


74 13 APPENDIX

13.1.4 Pre- and Postamble → Header and Footer

Set my-blog-header-file and define the function my-blog-header
to insert this file into the current buffer� �
(setq my-blog-header-file "~/repos/blog/header.html")
(defun my-blog-header (arg)
(with-temp-buffer
(insert-file-contents my-blog-header-file)
(buffer-string)))� �
According to the source code of the online files the content of

my-blog-header-file header.html at ~/repos/blog/ is probably� �
<div id="preamble" class="status">
<header><div class="banner">

<a id="myname" href="/">Dennis Ogbe </a><hr>
<nav><p><a href="/">Home</a>

<a href="/about.html">About</a>
<a href="/research.html">Research</a>
<a href="/blog.html">Blog</a>

</p></nav></div></header></div>� �
The footer contains the link to the rss file produced with the

blog-rss publishing list and to a (missing) contact page. It’s a string
set with� �
(setq my-blog-footer "<hr />\n<p><span style=\"float: left;\"><a
↪→href= \"/blog.xml\">RSS</a></span>License: <a href=
↪→\"https://creativecommons.org/licenses/by-sa/4.0/\">CC BY-SA
↪→4.0</a></p>\n<p><a href= \"/contact.html\"> Contact</a></p>\n")� �

In the publishing projects blog-articles and blog-pages the
function and the string are included with the project properties� �
:html-preamble my-blog-header
:html-postamble ,my-blog-footer� �

So the preamble, i.e., header, is named my-blog-header and
gets a <header> element, while the postamble, i.e., footer, is named
my-blog-footer and goes without the privilege of a <footer> el-
ement; see the <header> and the ARIA: banner role entries at
developer.mozilla.org about the intentions of these elements.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/header
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles/banner_role


13.1 Ogbe’s Website Construction 75

13.1.5 Home Up

The html-link-home features are explained in the export script
ox-html.el only. Unless :html-link-up and :html-link-home

are both "" the first entry after the <body> element is created from
:html-home/up-format; see the corresponding doc-string.� �
<div id="org-div-home-and-up">
<a accesskey="h" href="%s"> UP </a> |
<a accesskey="H" href="%s"> HOME </a>
</div>� �

Both the blog-articles and the blog-pages publishing list con-
tain the confusing settings – because the link-home is defined twice
–� �
:html-link-home "/" :html-home/up-format ""
:html-link-up "" :html-link-home ""� �

while the blog-rss list defines� �
:html-link-home "https://ogbe.net/" :html-link-use-abs-url t� �

with an activated ..-use-abs-url setting which prepends relative
links with the content of the file based #+HTML_LINK_HOME: or the pub-
lishing property :html-link-home.

13.1.6 Footnote

According to the doc-string of org-html-footnotes-section the
footnote section defaults to� �
<div id="footnotes">
<h2 class="footnotes">%s: </h2>
<div id="text-footnotes">
%s

</div>
</div>� �

It should contain a two instances of %s.

The first will be replaced with the language-specific word for
"Footnotes",



76 13 APPENDIX

the second one will be replaced by the footnotes themselves.

Other settings are about

the org-html-footnote-format which defaults to
<sup>%s</sup>, where %s will be replaced by the footnote
reference itself

and the org-html-footnote-separator set to <sup>, </sup>

Ogbe removes the language dependent part by defining
:html-footnotes-section as� �
<div id=’footnotes’><!--%s-->%s</div>� �

He also marks his superscript setting as !important without further
explanation. This might be related to the footnotes.� �
:with-sub-superscript nil ;; important!!� �
But nil just means not to interpret the underscore
"_" and the caret "ˆ" for export; see the doc-string of
org-export-with-sub-superscripts.

13.1.7 Pre- and Post-Processors

Ogbe says that his pre- and post-processors are
used to move around some files before and after pub-
lishing. Both my-blog-pages-postprocessor and
my-blog-articles-preprocessor are message dummies. The
code is shown at length at the How to Blog.. [16] paragraph beginning
with “Next I define some pre- and postprocessors. . . ”

my-blog-pages-preprocessor moves a fresh version of the
settings.org file to the pages directory. As I under-

stand the code it copies the current settings.org as
my-blog-emacs-config-name, which is set to emacsconfig.org,
to destdir, containing the value of :base-directory.

my-blog-articles-postprocessor: “massage” the sitemap file
and move it up one directory. The “massage”-part is a com-
ment further down but not filled with a procedure: “massage the
sitemap if wanted”.



13.1 Ogbe’s Website Construction 77

So, the whole function block seems only being concerned about mov-
ing pages up. The inclusion at the blog-articles and blog-pages
publishing properties are four lines syntactically summarized to� �
:preparation-function my-blog-[articles|pages]-preprocessor
:completion-function my-blog-[articles|pages]-postprocessor� �
13.1.8 Options, Drawer

The options for exporters Ogbe chooses to extract to his publishing
configuration are discussed in Section 7. Here I focus on the two settings
regarding org mode drawers.� �
:with-author t :with-creator nil
:with-date t :headline-level 4
:section-numbers nil :with-toc nil
:with-sub-superscript nil :with-drawers t
:html-format-drawer-function my-blog-org-export-format-drawer� �

:with-drawers t enables the export of org mode drawers and
customizes the org-export-format-drawer-function with the pub-
lishing property in the last line. Ogbe cites Panchekha [19] for this
idea. According to Panchenka’s Drawer Section Ogbe seems to dis-
like org mode’s drawer export-to-code-block default. The redefini-
tion line at the end of Panchekha’s code example is equivalent to the
publishing property :html-format-drawer-function above. And the
corresponding <div> section generator is given as� �
(defun my-blog-org-export-format-drawer (name content)
(concat "<div class=\"drawer " (downcase name) "\">\n"
"<h6>" (capitalize name) "</h6>\n"
content
"\n</div>"))� �

13.1.9 Sitemap

The customizations that Ogbe “bolted” on org’s publish-
ing features exceed my debugging skills. He built his own
sitemap creator added as project property :sitemap-function

https://orgmode.org/manual/Publishing-options.html
https://orgmode.org/manual/Drawers.html
https://orgmode.org/manual/Drawers.html
https://pavpanchekha.com/blog/org-mode-publish.html#org8ad0ef5


78 13 APPENDIX

my-blog-sitemap in the publishing list blog-articles writ-
ten into :sitemap-filename "blog.org". The function is also
a part of my-blog-articles-postprocessor which is employed
as :completion-function for both the blog-articles and the
blog-pages publishing list.25 The whole sitemap producing part of
the blog-articles publishing list is� �
;; sitemap - list of blog articles
:auto-sitemap t
:sitemap-filename "blog.org"
:sitemap-title "Blog"
;; custom sitemap generator function
:sitemap-function my-blog-sitemap
:sitemap-sort-files anti-chronologically
:sitemap-date-format "Published: %a %b %d %Y"� �

The purpose of the my-blog-sitemap specification is to in-
clude a part of a blog entry as teaser in the his sitemap con-
struction. Ogbe encloses the “preview” part of the post in
#+BEGIN_PREVIEW...#+END_PREVIEW tags, which his “(very simple)
parser” then inserts into the sitemap page. The sitemap production
is connected to the publishing list blog-article. According to this
description the expanded sitemap production blog.html is the cen-
tral blog entry distributor for what I called unhidden files.

13.1.10 RSS

The rss settings are addressed in a definition� �
(require ’ox-html)
(require ’ox-rss)
(setq org-export-html-coding-system ’utf-8-unix)
(setq org-html-viewport nil)� �

and a publishing section� �
("blog-rss"
:base-directory "~/repos/blog/blog/"
:base-extension "org"

25In his Website’s About , Section Update 2021-10-14, he mentions that his
function depends on org version 9.0 for his specific use of the signature of the
:sitemap-function. So it should take some effort to reproduce the procedure.

https://ogbe.net/about.html


REFERENCES 79

:publishing-directory "~/repos/blog/www/"
:publishing-function org-rss-publish-to-rss

:html-link-home "https://ogbe.net/"
:html-link-use-abs-url t

:title "Dennis Ogbe"
:rss-image-url "https://ogbe.loc/img/feed-icon-28x28.png"
:section-numbers nil
:exclude ".*"
:include ("blog.org")
:table-of-contents nil)� �

They fill the blog.org file which is org-rss-publish-to-rss pub-
lished to blog.xml. With these informations and the ox-rss.el
script I’m sure to get some ideas about the rss export features.

References

[1] Tim Berners-Lee and Mark Fischetti. Weaving the Web. HarperCollins, 2000.

[2] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing
with Python. O’Reilly Media, 2009.

[3] Debra Cameron, James Elliott, Marc Loy, Eric Raymond, and Bill Rosenblatt.
Learning GNU Emacs. O’Reilly Media, 3rd edition, 2004.

[4] Steve Faulkner. On html belts and aria braces. URL, 2015. updated 2020-08-
03.

[5] Yuan Fu. Blog in org mode revisited. URL, 2018.

[6] Yuan Fu. Blog with only org mode. URL, 2018.

[7] Joshua Gay, editor. Free Software, Free Society. GNU Press, Free Software
Foundation, 2015.

[8] Glucksman Library. Cite it Right. University of Limerick’s Referencing Series.
Glucksman Library, 2nd edition, 2008.

[9] Kurt Hornik, Duncan Murdoch, and Achim Zeileis. Who did what? The R
Journal, 4(1):64–69, June 2012.

[10] Xah Lee. Emacs lisp: Call shell command. url, 2018. updated 2021-06-21.

https://ogbe.net/blog.xml


80 REFERENCES

[11] Eric A. Meyer and Estelle Weyl. CSS The Definitive Guide. o’Reilly, 2017.

[12] Frank Mittelbach, Michel Goossens, Johannes L. Braams, David P. Carlisle,
and Chris A. Rowley. The LaTeX Companion 2. Tools and Techniques for
Computer Typesetting. Addison-Wesley Professional, Reading, Massachusetts,
second edition, April 2004.

[13] Peter Morville and Louis Rosenfeld. Information Architecture for the World
Wide Web. O’Reilly, Beijing u.a., 3. ed. edition, 2006.

[14] Simon Munzert, Christian Rubba, Peter Meißner, and Dominic Nyhuis. Auto-
mated Data Collection with R. Wiley John + Sons, 2014.

[15] Deborah Nolan and Duncan Temple Lang. XML and Web Technologies for
Data Sciences with R. Use R! Springer New York, 2014.

[16] Dennis Ogbe. Blogging using exclusively org-mode. URL, 2016.

[17] Dennis Ogbe. My emacs configuration. URL, 2020.

[18] Duncan Mac-Vicar P. Migrating from jekyll to org-mode and github actions.
URL, 2019.

[19] Pavel Panchekha. Using org-mode to publish a web site. URL, 2011.

[20] pjs64. Org 2 shtml0 eazy. URL, 2022.

[21] Sebastian Rose. Publishing treemenus for org-files. URL.

[22] Sebastian Rose. Publishing org-mode files to html. URL, 2020.

[23] Tessa Blakely Silver. Joomla! Template Design. packt publishing, Birmingham,
2007.

[24] David Wood, Marsha Zaidman, Luke Ruth, and Michael Hausenblas. Linked
Data. Manning, 2014.


	I Org to Website
	Intro
	Test, One, Two
	Org Publish
	Example Selection
	Pages

	Publishing Experiments
	Producing the Laboratory Files
	Analyze It
	Resulting Configuration

	Website Template
	Org HTML Export
	Aside
	Headline Levels

	Org CSS Construction
	Glue HTML and Extract Images
	Netlify Drop
	Test, One, two, three
	Expanded Configuration
	Bibliography and PDF
	Compiling Latex
	BibTeX HTML
	Symlink Publishing Adaption

	Glue HTML
	Paths and Files
	Select Updated Pages
	Page Assembly

	Image Handling
	Change Relative Image Links
	Collect Media
	Hidden Agenda for Images


	What's more
	Publishing Hooks
	Index Toc Tag Category Bibentry Link-List
	BibTeX
	Links and Indices
	XML Tools for Attribution Retrieval

	Select Files and Content
	Template Development
	Netlify Alternatives
	Weaving Amaya

	Appendix
	Ogbe's Website Construction
	Publishing Action
	Head
	Mathjax
	Pre- and Postamble  Header and Footer
	Home Up
	Footnote
	Pre- and Post-Processors
	Options, Drawer
	Sitemap
	RSS




