
pjs64

Tools
Scientifically Approved

Resource Saving Minimalism

pjs64

Blog-roller · No-Kite-Surfer · Org-mode Rookie
pjs64.wordpress.com · 2022 Somewhere

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
https://pjs64.wordpress.com

CONTENTS 3

Contents

I Check Twinkle ChucK 4

1. Two Twinkle Bars 4

2. Putting up a Table 7

3. Getting Note Names 8

4. Building the Score 12

5. Frequency-versus-Time Graph 16

6. Recording ChucK to WAV 18

7. Audio Illustrations 20
7.1. Normalize and Mono . 22
7.2. Wave Spectrum Class . 23
7.3. Fundamental Frequency 26
7.4. Time Series . 28
7.5. Smoothing . 29
7.6. Melody Plot . 30
7.7. Note Quantization . 31
7.8. Lilypond Output . 32
7.9. Quantplot . 33

8. What’s more 34

9. Apx A – ChucK on Ubuntu and Arch 39
9.1. Ubuntu . 40
9.2. Endeavor OS – Arch . 41
9.3. Compilation . 42

10.Apx B – Org Mode Scripting of ChucK 44

11.Apx C – ChucK Sources 47

4 1 TWO TWINKLE BARS

Part I

Check Twinkle ChucK

The babel section of org mode delivers all means to act as the control
center for composing just anything: slide show, presentation, song,
movie, 3D printing; any kind of process control. Here’s the part about
music with the main focus of translating a basic chuck composition
to a musical score in lilypond with R analysis tools in a gnu linux
environment. The appendices expand on chuck matters. Is this a way
to Memphis?

1 Two Twinkle Bars

The concepts of [6]’s first Chapter Basics: Sound, Waves, and
ChucK Programming are condensed in Listing1.20.ck available at
github. It defines two patches, i.e. sound signal chains, two float,
and one dur variable.� �
// Twinkle, with two oscillators!
SinOsc s => dac; // (1) Sine wave oscillator.
TriOsc t => dac; // (2) Another oscillator (triangle wave).

// our main pitch variable
110.0 => float melody; // (3) Sets initial pitch.

// gain control for our triangle wave melody
0.3 => float onGain; // (4) Gains for note on.

// we’ll use this for our on and off times
0.3 :: second => dur myDur; // (5) Notes duration.� �

Then it initializes both voices – the melody with a gain of onGain,
the bass with 0 – and increases the frequency of the melody, i.e., the
TriOsc instance t, from 110 to 220Hz in 1Hz steps of 10ms resulting
in a duration of

https://github.com/ccrma/chuck/tree/master/examples/book/digital-artists/chapter1/Listing1.20.ck
https://chuck.cs.princeton.edu/doc/program/ugen_full.html#triosc

5

110 · 10ms = 1.1 s� �
onGain => t.gain; // (6) Turns on triangle oscillator.
0 => s.gain; // (7) Turns off sine osc.

while (melody < 220.0) { // (8) Loops until pitch reaches 220.
melody => t.freq;
1.0 +=> melody; // (9) Steps up pitch by 1 Hz.
0.01 :: second => now; // (10) Every 1/100 of a second.

}� �
In the context of the book’s chapter the technical advancement of

this code snippet is the realization of a “sweeping pitch upward” by
using a while loop. The next loop is a for loop and advances the time
0.6 seconds twice for both voices and switches the melody note on and
off.� �
// turn both on, set up the pitches
0.7 => s.gain; // (11) Now turn on sin osc too.
110 => s.freq; // (12) ...and initialize its pitch.

// play two notes, 1st "Twinkle"
for (0 => int i; i < 2; i++) { // (13) Use a for loop to play two
↪→notes.

onGain => t.gain; // (14) Turn on triangle.
myDur => now; // (15) Let note play.
0 => t.gain; // (16) Turn off triangle.
myDur => now; // (17) Silence to separate notes.

}� �
This loop is repeated three times. The result of the first for loop:

the bass plays a 110Hz sine wave with a volume od 0.7 while the triangle
wave puts two 0.3-gain melody stacatto quarters of 220Hz above it. The
second for loop is prepared by another set of frequencies for melody
and bass� �
138.6 => s.freq; // (19) Sets up next "twinkle" frequency.
1.5*melody => t.freq;� �

6 1 TWO TWINKLE BARS

Loud Sine Wave?
The recognized volume of different waveforms may not be equal
for the same gain value. This is an issue not being discussed here,
but it is triggered by the terms root mean square and deciBel, or,
mathematically, by the integral of the wave. I’d recommend Jérôme
Sueur’s book Sound Analysis and Synthesis with R [14] which con-
nects rms and dB in a section of 8 pages.a In contrast the air
pressure of the sound depends on the speakers. For example I
hardly can hear the bass line on my laptop speakers.

aSubsection 2.2.3 Amplitude in Section 2.2 Sound as a Mechanical Wave
of [14]’s Chapter 2 What is sound?. This introduction is complemented by 18
pages of Chapter 7 Amplitude Parameterization.

�
From these sets of frequencies I can’t guess the note names.
I could look them up in tables. chuck offers frequency
to midi conversion. To get the pitch from a frequency I’ll
introduce the R packages seewave, soundgen, tabr, and tuneR
in Section 3. In the current section I just finish collecting
all frequencies and durations used in the sequence.

The frequencies of the bass line and the next two quarters for the
word “little” are set by� �
146.8 => s.freq; // (20) Sets up next frequency for
↪→"little".
1.6837 * melody => t.freq;� �

They are again played with the same for loop. Bass and melody
for the word “star” is set and played by� �
138.6 => s.freq; // (22) Sets up next frequency for "star".
1.5*melody => t.freq;
onGain => t.gain; // (23) Plays that note...
second => now; // (24) ...for a second.� �

The sequence is terminated by decreasing the frequency of the
TriOsc instance t from 330 to 0Hz in 1Hz and in parallel the SinOsc

http://CRAN.R-project.org/package=seewave
http://CRAN.R-project.org/package=soundgen
http://CRAN.R-project.org/package=tabr
http://CRAN.R-project.org/package=tuneR
https://chuck.cs.princeton.edu/doc/program/ugen_full.html#triosc
https://chuck.cs.princeton.edu/doc/program/ugen_full.html#sinosc

7

instance s from 440 to 0Hz in 1.333Hz steps per 10ms, i.e. a duration
of

330 · 10ms = 3.3 s� �
for (330 => int i; i > 0; i--) { // (25) Uses a for loop to sweep
↪→down from 330 Hz.

i => t.freq;
i*1.333 => s.freq;
0.01 :: second => now; // (25) Uses a for loop to sweep down
↪→from 330 Hz.

}� �
2 Putting up a Table

Table 1 shows the single steps. I tried to design it to illustrate some
kind of symmetry. The playing time adds up to a total of exactly 9.0
seconds.

Table 1: The note-on sequence of Listing1.20.ck. First line of a four-
row block denotes the absolute time, the second row the duration of every
note or glissando event. The % sign is used for continuation. The reading
direction is arranged as circle: the upper 4 rows from left to right, the lower
4 rows back from right to left. mel denotes the triangular oscillator instance
t of the melody, bas the sine wave instance s of the bass.

t 0 0 1.1 1.4 1.7 2 2.3 2.6
∆t → 1.1 0.3 0.3 0.3 0.3 0.3 0.3

mel – 110↗220 220 – 220 – 330 –
bas – – 110 % % % 138.6 %

↓

t 9.0 5.7 4.7 4.4 4.1 3.8 3.5 3.2 2.9
∆t ← 3.3 1 0.3 0.3 0.3 0.3 0.3 0.3

mel 0 0↙330 330 – 370.41 – 370.41 – 330
bas 0 0↙ 440 138.6 % % % 146.8 % %

https://github.com/ccrma/chuck/tree/master/examples/book/digital-artists/chapter1/Listing1.20.ck

8 3 GETTING NOTE NAMES

3 Getting Note Names

The R packages I mentioned above offer tools related to sound. I’ve
collected a few items about these packages with a focus on frequency-
to-notename conversion. As the first entry I also mention an emacs
solution. The first seewave list item presents the Math for equal tem-
perament. For me the last, not least at all, entry tabr is a very recent
discovery.

The calc mode1 of the emacs calculator is switched on and
off by C-x * c . In this mode the user can enter a frequency
value with a unit introduced by the algebraic-mode apostrophe se-
lector as ’ 440 Hz [RET], then hit l s (ell .. ess) to get A_4
representing the scientific pitch notation. The usage of the emacs
calculator for the frequency estimation is demonstrated in the
next list item about seewave in Table 2.

The R package seewave doesn’t provide frequency-to-notename
conversion, but the seewave author’s book [14] discusses some al-
ternatives2 and the documentation of notefreq() shows the equa-
tion for equal temperament, which could be solved for n to get
something like a freqnote() function.

The function notefreq() accepts (1) a note n entered as a number

1Any of the emacs calculator modes is supposed to work like invoking a
calculator app from the desktop; see the calc Manual’s Section Using Calc. There’s
also an org mode source code version of calc neatly arranged with elisp – see
calc Manual’s Section Calling Calc from Your Lisp Programs – and one for org’s
spreadsheet feature of tables; see org Manual’s Section Formula syntax for Calc.

l s are the keys for calc-spn, overloaded with an input integer type for midi
and a unit type in Hz or 1/s or their kilo, mega or whatever versions; see calc
Manual’s Section Musical Notes. Well, some folks might be uncomfortable with
note names like Asharp_2.

2His Subsection 9.4.2 Musical Scale in Section 9.4 Frequency Scales of [14]’s
Chapter Introduction to Frequency Analysis: The Fourier Transformation is part of
a two part classification in 9.4.1 Bark and Mel Scale and 9.4.2 Musical Scale. His ref-
erence for the cochlea related Bark Scale is [16], for the psychological Mel Scale [13].
And he points to the tuneR function mel2hz() which works with a parameter htk
representing the Hidden Markov Model Toolkit presented at [htk.eng.cam.ac.uk].
But these scales are more like measurement scales.

http://CRAN.R-project.org/package=seewave
http://CRAN.R-project.org/package=tabr
http://CRAN.R-project.org/package=seewave
http://CRAN.R-project.org/package=seewave
http://CRAN.R-project.org/package=seewave
https://rdrr.io/cran/seewave/man/notefreq.html
https://rdrr.io/cran/seewave/man/notefreq.html
https://www.gnu.org/software/emacs/manual/html_node/calc/Using-Calc.html
https://www.gnu.org/software/emacs/manual/html_node/calc/Calling-Calc-from-Your-Programs.html
https://orgmode.org/manual/Formula-syntax-for-Calc.html
https://www.gnu.org/software/emacs/manual/html_node/calc/Musical-Notes.html
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/mel2hz.html

9

or as a string like Ab, B, or C#, (2) an octave index i, and (3) a
ref frequency r. The resulting frequency f is

f(n, i, r) = r · 2i−32
n−10
12 ; use x

m
n = n

√
xm

= r · 2i−3 12
√
2n−10 = r

2i

23

12
√
2n

12
√
210
≈ 2ir 12

√
2n

14.2544

Approximated with an accuracy of six significant numbers. Table
2 shows the emacs calculator keystrokes for 1/(23

12
√
210) in

the frequency estimation.

Table 2: The emacs calculator keystrokes in calc mode, switched on
and off by C-x * c . The [TAB] key swaps the last two entries; see
Section Stack Manipulation Commands in the calc Manual.

keystrokes result

1[RET]12[RET]/ → 0.0833333333333
2[RET]10[RET]^ → 1024
[TAB]^ → 1.78179743628
8[RET]* → 14.2543794902
1[RET][TAB]/ → 0.0701538780196

For the default i=3 the function can be reduced to

f = r · 2
n−10
12 = r

12
√
2n

12
√
210
≈ r

12
√
2n · 0.561231

For C3 with n = 1 that’s 261.626 or the F♯3 from Table 3 the
n = 7 delivers 369.994. According to the corresponding code the
chuck’ers offer 370.414. Cool, I’ve gathered enough knowledge
to enter the nitpicking stage.

For the note A3 which has a rank of n = 10 I can reduce the
first term’s n− 10 to 0 and with a0 = 1 this reduction is further
simplified to f = r, with an r default of 440.

With the help of these elaborations the dear reader might figure
out any frequency with a handheld calculator. Note that the rank

https://www.gnu.org/software/emacs/manual/html_node/calc/Stack-Manipulation.html

10 3 GETTING NOTE NAMES

number n is neither confined to the range [1..12] nor to integers.3
So, for example, it can map to any of the semitone functions
below. Potential decimal parts are representing the musical cent
unit which is supposed to change the logarithmic distance of two
consecutive notes into a hundred equidistant pieces.

seewave also offers a related octaves() function. It’s invoked
like octaves(f,b,a) and returns the frequency values of b
octaves below and a octaves above a specific frequency f ;
octaves(220, b=1,a=2) gives the numeric vector 110 220 440 880
– bold emphasis added.

soundgen .. HzToSemitones() and semitonesToHz() convert a fre-
quency in Hz into a halftone position and vice versa along a full
scale of musical notes, that is, a scale starting with a C note at
16.4Hz in the infrasound domain and ending with a B note at
31608.5Hz in the ultrasound domain. With the soundgen dataset
notesDict the user can turn a soundgen semitone into a pitch.

tuneR .. noteFromFF() returns an integer valued semitone differ-
ence to A3.4 The function noteFromFF() transforms the frequency
value x to the integer valued 12th root of a frequency-to-diapason
relation including a logarithmic tweaking variable roundshift.� �
notesFromFF <- round(12 * log(x / diapason, 2) + roundshift)� �
For example, the frequency 493Hz yields 2, the B note of the
third octave or b’.

The notenames() function translates this numeric difference to a
note name’s string like c’. Moreover the function lilyinput() –

3The author calls n the rank of the note. The main code in the func-
tion notefreq() maps the sequence c("C", "C#", "D", "D#", "E", "F", "F#",
"G", "G#", "A", "A#", "B") or the harmonic equivalents Db, Eb, Gb, Ab, Bb to
the rank numbers 1:12 – excluding the combinations E#, Fb, B#, and Cb. The octave
index is related to pitch notation reasoning discussed in the wikipedia entries Oc-
tave or Scientific Pitch Notation and begins to reach into negative values beyond
C0 with 16.35Hz. It allows the user to assign a note name to every frequency:
color, γ-rays, ionization energy.

4A3 is the A of the third octave also written a’.

http://CRAN.R-project.org/package=seewave
https://rdrr.io/cran/seewave/man/octaves.html
http://CRAN.R-project.org/package=soundgen
https://rdrr.io/cran/soundgen/man/HzToSemitones.html
https://rdrr.io/cran/soundgen/man/semitonesToHz.html
http://CRAN.R-project.org/package=soundgen
https://rdrr.io/cran/soundgen/man/notesDict.html
http://CRAN.R-project.org/package=soundgen
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/noteFromFF.html
https://rdrr.io/cran/tuneR/man/noteFromFF.html
https://rdrr.io/cran/tuneR/man/notenames.html
https://rdrr.io/cran/tuneR/man/lilyinput.html
https://rdrr.io/cran/seewave/man/notefreq.html
https://en.wikipedia.org/wiki/Octave
https://en.wikipedia.org/wiki/Octave
https://en.wikipedia.org/wiki/Scientific_pitch_notation

11

and a data-preprocessing function quantMerge() – can prepare a
data frame to be presented as sheet music by postprocessing with
the lilypond. The lilyinput() help includes a maturity caveat.
For this purpose the features of tabr seem much more advanced.

tabr .. freq_pitch() turns a frequency into a pitch. With the
parameter octaves the user can choose tick or integer output,
the accidentals can be set to flat or sharp, and a4 is offered to
be set to something different from the default of 440. A vector
input can be collapse’d.

tabr defines its semitones along the midi numbers. The corre-
sponding freq_semitones() function delivers numbers with ex-
panded range above 127 and below 0.

Table 3 shows a selection of the R functions. The corresponding R
code starts from the values in the chuck script Listing1.20.ck. The
rows of Table 3 are

tuneR – tuneR’s notenames() which depends on input from
noteFromFF()
tfpt – tabr’s outputs of a sharply ticked freq_pitch()’es, which
match the lilypond representation
tfpi – tabr’s the sharp integer version of freq_pitch()
midi – the tabr freq_semitones() that represent the midi values
sghs – the soundgen HzToSemitones()
sndp – the lookup result in soundgen’s notesDict� �

f <- c(110,138.6,146.8,220,1.5*220,1.6837*220,440);
n <- tuneR::noteFromFF(f);
p <- tuneR::notenames(n);
t <- tabr::freq_pitch(f,ac="sharp");
i <- tabr::freq_pitch(f,ac="sharp",o="integer");
s <- round(tabr::freq_semitones(f));
g <- round(soundgen::HzToSemitones(f));
d <- soundgen::notesDict[1+g,1];
rbind(Hz=round(f,1),tuneR=p, tfpt=t, tfpi=i,

midi=s, sghs=g, sndp=d)� �

https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/lilyinput.html
http://CRAN.R-project.org/package=tabr
http://CRAN.R-project.org/package=tabr
https://rdrr.io/cran/tabr/man/pitch_freq.html
http://CRAN.R-project.org/package=tabr
https://rdrr.io/cran/tabr/man/pitch_freq.html
https://github.com/ccrma/chuck/tree/master/examples/book/digital-artists/chapter1/Listing1.20.ck
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/notenames.html
https://rdrr.io/cran/tuneR/man/noteFromFF.html
http://CRAN.R-project.org/package=tabr
https://rdrr.io/cran/tabr/man/pitch_freq.html
http://CRAN.R-project.org/package=tabr
https://rdrr.io/cran/tabr/man/pitch_freq.html
http://CRAN.R-project.org/package=tabr
https://rdrr.io/cran/tabr/man/pitch_freq.html
http://CRAN.R-project.org/package=soundgen
https://rdrr.io/cran/soundgen/man/HzToSemitones.html
https://rdrr.io/cran/soundgen/man/notesDict.html

12 4 BUILDING THE SCORE

Table 3: Frequency-to-note comparison of R packages one row of tuneR,
three rows of tabr, and two rows of soundgen. See the text and the code for
details.

Hz 110 138.6 146.8 220 330 370.4 440

tuneR A c# d a e’ f#’ a’
tfpt a, c# d a e’ f#’ a’
tfpi a2 c# d a e4 f#4 a4
midi 45 49 50 57 64 66 69
sghs 93 97 98 105 112 114 117
sndp A2 C#3 D3 A3 E4 F#4 A4

4 Building the Score

In formal music the first event of the Twinkle impro, the upward
pitch, already leads into trouble. It has to be related to the song it
is part of. How long is it compared to a quarter note of the song’s
rhythm? How do I translate the subsequent sound constructions of the
chuck script to beats and bars?

To get a clue I first go to the score of the Twinkle song at
musescore.com or musicsheets.org. These pages trigger some other
thoughts about the piece of music and the composer’s intentions.
musicsheets.org identifies the two names W.A. Mozart and C.E.
Holmes, an Andante tempo of 100 quarters per minute, and a B♭ major
key for 14 instruments extended by some snare-basedrum percussions.
While the musescore.com example is an “easy” version in C major with
two voices. The wikipedia entry for Twinkle confirms the C major key.

Usually the key of a song can be derived from the pitch of the last
melody note. In the case of Twinkle the melody also begins with this
root note. The chuck composers choose the frequency 220Hz, i.e., an
A_3 in scientific pitch notation. They, however, introduce a “main pitch
variable” as melody and assign a value of 110Hz to it. This melody
frequency doesn’t show up in the melody, only in the decorations of the
snippet and in the bass line.

Comparing the chuck sequence illustrated by Table 1 to both
scores at musescore.com and musicsheets.org a quarter note is 0.6

http://CRAN.R-project.org/package=tuneR
http://CRAN.R-project.org/package=tabr
http://CRAN.R-project.org/package=soundgen
https://musescore.com/juliathezhu/twinkle-twinkle-little-star-easy
https://musicsheets.org/twinkle-twinkle-little-star-score/
https://musicsheets.org/twinkle-twinkle-little-star-score/
https://musescore.com/juliathezhu/twinkle-twinkle-little-star-easy
https://en.wikipedia.org/wiki/Twinkle,_Twinkle,_Little_Star
https://musescore.com/juliathezhu/twinkle-twinkle-little-star-easy
https://musicsheets.org/twinkle-twinkle-little-star-score/

13

seconds and the quarter notes of the melody are played staccato.5 For
the tempo information near the clef I choose quarters per minute; see
Figure 1. If one quarter takes 0.6 seconds one minute contains . . .

1 beat
0.6 s

=
x beats
60 s

; x =
1 beat · 60 s

0.6 s
= 100 beats

For the melody I use a treble or G clef transposed one octave down,
the bass line is fine with a bass clef. The glissandi need some more
effort. And the duration of the last Twinkle melody note has to be fit
in somehow. In the order of appearance I discuss three topics.

The 1.1 s of the upward glissando, expressed in terms of 0.6 s
quarter pieces, has a lenght of one quarter plus one quaver plus
two 16ths of a 16th triplet. Or a half note minus a 16th triplet
note. And it consumes the position of an upbeat. I decide to
transfer this glissando to a length of 1.2 s.

The last note of the seven-note Twinkle sequence should be a half
note and would take 1.2 s then, but the chuck’ers decide for a
length of one second. In the context of the song’s beat I could
mix the last note with the subsequent downward glissando. But
I decide to expand it to a half note and push the glissando to the
next bar.

The decreasing unit after the short last note raised the question
if I should construct the glissandi to be parallel or should I ex-
actly reproduce the downward pitches no matter of their musical
context? What about the fact that the upper decrease is played
with the bass wave, and the lower one with the melody wave?

The end sequence with two 3.3 s downward glissandi can be
matched to five quarters plus one quaver. I expand this dura-
tion to one and a half note, so the relation from up to downward
pitch is maintained. The whole sequence then takes exactly four
bars.

5According to the corresponding wikipedia entry a regular staccato shortens a
note by 50%. The entry quotes the music notation program Sibelius, particularly
the 2008 reference manual of version 5.2.

https://en.wikipedia.org/wiki/Staccato

14 4 BUILDING THE SCORE

The downward pitches ar much harder to translate. Each of the
final glissandi ends with 0Hz; nobody can hear or play that. For
an exact replication of both glissandi I’d have to calculate the
time when the glissando which controls the loop from 330Hz to
0Hz arrives at, say, C0, i.e., ≈ 16.35Hz. And transfer this result
to the glissando from 440Hz to 0Hz which probably leads to a
slightly later moment, I guess. The time series illustration in
Figure 2 only shows the moment for the fundamental frequency
of the whole sound, i.e. the louder bass line.

I decide to call the situation indeterminable and interpret the
glitches as glissandi beginning at 330Hz E4 and 440Hz, A4. I
construct them to be parallel and to consume a range of two
octaves, which end at E2 or A2, respectively. The bass-above-
melody issue stays untouched.

The lilypond code below generates the sequence shown in Fig-
ure 1. From C3 upwards the lilypond note names match the tuneR
output of notenames(), while the lilypond declarations a,|a„|a„ ,|a„„
translate to A|A,|A„|A„, in tuneR. The lilypond script below should
be reproducible after studying the sources in the Learning6 and the
Notation Manual.7’8’9’10’11 Then – after installing lilypond, includ-
ing it as babel source code language in the .emacs file,12 and getting
the lilypond helpers for emacs13 – with the listing named #+Name:
lst1-20muProScore in the org source, available at bitbucket, the in-

6Lilypond Learning→ 1 Tutorial → 1.2 How to write input files → 1.2.1 Simple
notation.

7Lilypond Notation→ 1 Musical notation → 1.1 Pitches → 1.1.1 Writing Piches
→ 1.1.1.4 Note Names in Other Languages.

8ibid. → 1.1.3.1 Clef .
9ibid. → 1.1.3.2 Key Signatures.

10ibid. → 1.2 Rhythms → 1.2.3 Displaying Rhythms → 1.2.3.2 Metronome
Marks.

11ibid. → 1.5 Simultaneous notes → 1.5.2 Multiple Voices → 1.5.2.6 Writing
Music in Parallel . The the trigger symbol for this parallel notation is the vertical
line.

12Languages in the source code chapter of the org Manual.
13At lilypond’s github repository in the lilypond/elisp/ folder or mjago’s

emacs repo in the lilypond/ folder.

http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/notenames.html
http://CRAN.R-project.org/package=tuneR
https://bitbucket.org/StPjotr/hp/src/master/orgRoot/tools/klang.org
https://lilypond.org/doc/v2.22/Documentation/learning/simple-notation
https://lilypond.org/doc/v2.22/Documentation/learning/simple-notation
https://lilypond.org/doc/v2.22/Documentation/notation/writing-pitches#note-names-in-other-languages
https://lilypond.org/doc/v2.22/Documentation/notation/displaying-pitches#clef
https://lilypond.org/doc/v2.22/Documentation/notation/displaying-pitches#key-signature
https://lilypond.org/doc/v2.22/Documentation/notation/displaying-rhythms#metronome-marks
https://lilypond.org/doc/v2.22/Documentation/notation/displaying-rhythms#metronome-marks
https://lilypond.org/doc/v2.22/Documentation/notation/multiple-voices#writing-music-in-parallel
https://lilypond.org/doc/v2.22/Documentation/notation/multiple-voices#writing-music-in-parallel
https://orgmode.org/manual/Languages.html
https://github.com/lilypond/lilypond
https://github.com/mjago/emacs

15

terested reader can get an impression of lilypond at work in an org
mode source block with the :noweb feature applied.� �
\parallelMusic melody,base

{ \tempo 4 = 100
% bar 1 % bar 2
r2 a,4\glissando a a4 a e’ e’ |
r1 a,2 cis |
% bar 3 % bar 4
fis’4 fis’ e’2 e’1\glissando e,2 r2 |
d cis a’1\glissando a,2 r2 |

}
\new StaffGroup <<
\new Staff { \clef "treble_8" \key a \major \melody }
\new Staff { \clef bass \key a \major \base }

>>� �

Fig. 1: chuck’s decorated Twinkle snippet; put into the musical context of
a four bar loop.

To configure a short score snippet without the lilypond default of
a surrounding page like shown in Figure 1 I included a preamble with
the :noweb switch. The Notations Manual’s Spacing Issues Chapter14

deals with the value of its page-breaking attribute. While the markup
settings are part of the Chapter General Input and Output.15� �
\version "2.20.0"
\paper{page-breaking = #ly:one-line-breaking
indent=0\mm % line-width=170\mm
oddFooterMarkup=##f oddHeaderMarkup=##f
bookTitleMarkup=##f scoreTitleMarkup=##f }� �
14Lilypond Notation → 4 Spacing Issues → 4.3. Breaks → 4.3.2 Page Breaking
→ 4.3.2.5 One-line Page Breaking .

15ibid. → 3 General input and output → 3.2 Titles and headers → 3.2.2 Custom
titles, headers, and footers → 3.2.2.2 Custom layout for titles and 3.2.2.3 Custom
layout for headers and footers.

https://orgmode.org/manual/Noweb-Reference-Syntax.html
https://lilypond.org/doc/v2.22/Documentation/notation/page-breaking#one_002dline-page-breaking
https://lilypond.org/doc/v2.22/Documentation/notation/custom-titles-headers-and-footers#custom-layout-for-titles
https://lilypond.org/doc/v2.22/Documentation/notation/custom-titles-headers-and-footers#custom-layout-for-headers-and-footers
https://lilypond.org/doc/v2.22/Documentation/notation/custom-titles-headers-and-footers#custom-layout-for-headers-and-footers

16 5 FREQUENCY-VERSUS-TIME GRAPH

Developing the skills for managing lilypond in emacs may take
years but I think I named all the essential parts for this special purpose.

5 Frequency-versus-Time Graph

For the graph in this section I use results from Section 7 which ana-
lyzes the wav file produced in the next section. Note that this section,
Frequency-versus-Time Graph, doesn’t reproduce the fine-tuned musi-
cal score from the previous section. Instead it gets frequency and time
information from the recorded output of the original Listing1.20.ck
employing the tuneR function FF() without further explanation. Sec-
tion 7 then delivers more insight but still doesn’t touch much of the
theoretical basics.

The inspiration for this section is to find a programmatic coun-
terpart of ableton’s warping feature or its audio-to-midi converter.
audacity offers similar ideas in its beat finder, regular interval labels,
and label track at manual.audacityteam.org. And methods outlined
by Advances in Musical Information Retrieval [10] deliver much more
inspiration.

The attribute “frequency versus time” should lead to the undeco-
rated appearance of a piano roll, of illustrating a song like a Gantt
Diagram. The common nominator for the illustration of timely events
like music is something in the realm of time series. Time series usu-
ally concentrate on continuous signals with high data or sampling rates
resulting in immense data traffic. Reducing this sea of data to events
made the atari notator the tool for the digital evolution of musical
ambitions.

�
In contrast, expanding the realm of digital workstations to
real time sound design makes the current software construc-
tions eating up every bit of memory they manage to grab.
Freezing the results of this additional work has become a
main feature of the software. With this procedures the
software could be scaled back to on and off events with dy-
namic settings and probably run easily on a 8086 processor

https://github.com/ccrma/chuck/tree/master/examples/book/digital-artists/chapter1/Listing1.20.ck
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/FF.html
https://manual.audacityteam.org/man/beat_finder.html
https://manual.audacityteam.org/man/regular_interval_labels.html
https://manual.audacityteam.org/man/label_tracks.html

17

or an arduino. For chuck the users can compare their ex-
pectations of the software in the virtual machine processes,
discussed in 3.5 Properties of [15]’s ChucK Chapter and
introduced by Section 3.4 System Design and Implementa-
tion.

I consider wavetable synthesis as a link between freezing
and in-situ processing. Its purpose is introduced in Section
2 The Evolution of Sound Synthesis of Peter Manning’s
contribution [8] to Dean’s Oxford Handbook of Computer
Music: “The processing overheads involved in repeatedly
calculating each waveform sample from first principles are
significant, and it occurred to Mathews that significant sav-
ings could be produced in this regard by calculating the re-
quired waveform only once and then using a suitable table
lookup procedure to extract this information as the required
frequency.” Manning is referring to Mathew’s Technology of
Computer Music [9]; no specific passage.

For a start I’ll enjoy the graph and discover the data for note-on and
note-off events. On the way I hope to get some hints for control param-
eters in sound design or for note decorations. The graphs melodyplot(),
quantplot() and their data are the targets of the event task. The process
should motivate digging deeper into Fourier and spectral analysis.

The frequency versus time plot in Figure 2 is made with the help
of periodogram() and FF(). With an anticipation of Section 7 about the
main tuneR example it delivers 774 frequency values for my wav file. I
don’t ask why.

All I need the 774 parts for is to construct a proper time series. The
plot() function recognizes the time series and connects to plot.ts().
The experienced org mode babbler knows how to transform these
lines into a png plot and include it in this document; see the org
source of this blog entry at bitbucket.� �
oldPar <- par(mar=c(2,2,0,0)+0.1);
plot(ts1.20,type="h",col="grey85");
abline(h=c(110,220,440),col="grey50",lty="dashed");� �

While the time series class delivers an appropriate plot, the usual
time series functions seem unappropriate for making an event list, but

https://rdrr.io/cran/tuneR/man/melodyplot.html
https://rdrr.io/cran/tuneR/man/quantplot.html
https://rdrr.io/cran/tuneR/man/periodogram.html
https://rdrr.io/cran/tuneR/man/FF.html
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/r/base/plot.html
https://rdrr.io/r/stats/plot.ts.html
https://bitbucket.org/StPjotr/hp/src/master/orgRoot/tools/klang.org
https://bitbucket.org/StPjotr/hp/src/master/orgRoot/tools/klang.org

18 6 RECORDING CHUCK TO WAV

Fig. 2: Frequency versus time plot read from the recorded sequence of
Listing1.20.ck with a series of tuneR functions. They detect the louder

bass line and the upward glissando at the start.

I’m not an experinced time series analyst. I’ll go with exploratory data
analysis. Provided with the graphical feedback I can read 6 ranges
into the raw data. The limit indices of the ranges indicate time data;
each second contains 774/9 = 86 values, that’s about 11.6ms per value.
The first and the last range can be least square fit to linear slopes, the
other four ranges can be feed into boxplots. Then I can change the
parameters of periodogram() or FF() systematically to see the effects.

6 Recording ChucK to WAV

The code below shows the patch line definitions from the chuck
script lst1-20rec.ck which records to lst1-20rec.wav. It produces
a mono track at the left channel.

�
The analysis below in Section 7 prefers to recognize the bass
line. For now there are enough procedures to discover, so I
don’t offer the procedures to split the melody and the bass
line to different channels. It’s more interesting to discover
the functions’ preference for the bass line. Stereo sound is

https://github.com/ccrma/chuck/tree/master/examples/book/digital-artists/chapter1/Listing1.20.ck
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/periodogram.html
https://rdrr.io/cran/tuneR/man/FF.html
https://bitbucket.org/StPjotr/hp/musRoot/chuck/src/master/lst1-20rec.ck

19

one topic of [6]’s second chapter.

First I have to change the patch lines. The original file
Listing1.20.ck begins with� �

SinOsc s => dac; // (1) Sine wave oscillator.
TriOsc t => dac; // (2) Another oscillator (triangle wave).� �

For recording I put the SinOsc instance s through the Gain instance
named master into the WvOut sound buffer instance named w which then
disappears in the blackhole nirwana. Then I can connect the melody
line to the master track.� �
SinOsc s => Gain master => WvOut w => blackhole; // (1) bass chain
TriOsc t => master; // (2) melody chain� �

After that I copy the definitions of the variables melody, onGain,
and myDur and the settings of the .gain attributes for melody and bass
lines. This is exactly like in Listing1.20.ck, line 7-21, so I can insert
these lines without comments and don’t show them here.

The next part prepares for recording. It reads the current path of
the record script, names the output file, connects path and file name,
assigns the result to the .wavFilename attribute of the WvOut instance
w, and finally turns on the .record feature of w.� �
me.dir() => string path; // (3) get file path
"/lst1-20rec.wav" => string fileRec; // (4) target file
path+fileRec => fileRec; // (5) add the path
fileRec => w.wavFilename; // (6) choose the record file
w.record(1); // (7) press the record button� �

After inserting the rest of Listing1.20.ck, line 22-end, the record-
ing has to be finished and the file to be closed.� �
w.record(0); // (8) press the stop button
w.closeFile; // (9) close the record file� �

For invoking chuck in linux it’s important to set the sampling
rate to 44100Hz; on linux the default is 48 kHz.� �
cd musRoot/chuck
chuck --srate44100 lst1-20rec.ck� �

https://github.com/ccrma/chuck/tree/master/examples/book/digital-artists/chapter1/Listing1.20.ck
https://chuck.cs.princeton.edu/doc/program/ugen_full.html#sinosc
https://chuck.cs.princeton.edu/doc/program/ugen_full.html#gain
https://chuck.cs.princeton.edu/doc/program/ugen_full.html#WvOut
https://chuck.cs.princeton.edu/doc/program/ugen_full.html#blackhole
https://github.com/ccrma/chuck/tree/master/examples/book/digital-artists/chapter1/Listing1.20.ck
https://chuck.cs.princeton.edu/doc/program/ugen_full.html#WvOut
https://github.com/ccrma/chuck/tree/master/examples/book/digital-artists/chapter1/Listing1.20.ck

20 7 AUDIO ILLUSTRATIONS

The patch ending in the blackhole still takes as long as the regu-
lar output to dac. But there’s a tremendous time warp for using the
--silent option.� �
cd iMuMy/Chuck
chuck --srate44100 --silent lst1-20rec.ck� �

Both execute the task properly but terminate with a warning. I
think I recognized this warning generally in the context of using WvOut,
but it also maybe with LiSa or generally with sound buffers.� �
terminate called without an active exception
Aborted (core dumped)� �

Timing the commands confirms my manual measurement of 11 sec-
onds. And it shows 0.4 s for the silent version.

time blackhole +silent

real 0m10,873s 0m0,408s
user 0m0,573s 0m0,124s
sys 0m0,351s 0m0,005s

For filing I compress the resulting wave file to flac. After taping
I’ve got three new files to work with. A 3k chuck script, a 794k wav,
and a 246k flac file. And I’m all set for the . . .

7 Audio Illustrations

I refrained from calling this section “sound analysis” because it just
provides a coarse introduction to collected tools without scientific dis-
traction. The collection is a set of functions picked from the main ex-
ample for tuneR.16 I’ve chosen tuneR instead of seewave, because tuneR
seems closer to the programmatic background. While seewave offers
plenty of parameters to avoid the ... channel to the underlying func-
tions and includes switches for optional plots it also makes it hard to

16In later versions the lilypond part of this section will be supplemented signif-
icantly by the exploration of the R package tabr.

https://chuck.cs.princeton.edu/doc/program/ugen_full.html#WvOut
https://chuck.cs.princeton.edu/doc/program/ugen_full.html#LiSa
https://rdrr.io/cran/tuneR/man/tuneR.html
https://rdrr.io/cran/tuneR/man/tuneR.html
http://CRAN.R-project.org/package=tuneR
http://CRAN.R-project.org/package=tuneR
http://CRAN.R-project.org/package=seewave
http://CRAN.R-project.org/package=tuneR
http://CRAN.R-project.org/package=seewave
http://CRAN.R-project.org/package=tabr

21

customize very basic settings, because it hides the structure. Mean-
ing that – for the matter of skill building – I prefer tuneR’s unix like
aproach of many small programs to the highly integrated seewave solu-
tions. After this learning phase I will probably acccept seewave’s help.
I don’t asssume this as a better way, it’s just my way; greetings from
Frank Sinatra.

On my way to a notation compatible with lilypond I skip some
distractions from the tuneR example. I don’t

have to produce a sine wave, because I produced my own wav
source with chuck in the previous section.
pay attention to downsample() or the interactive extractWave().
dig into spectral density theory and smoothing techniques which
usually should be helpful for understanding the tuneR functions
periodogram() and FF().

In the subsections I look at tuneR plots and I offer some bridges
which are about to help me arriving at sound design. The code be-
low delivers the data for the rest of the main tuneR example, employ-
ing the functions readWave(), normalize(), mono(), periodogram(), FF(),
noteFromFF().� �
tmpfile <- "./iMuMy/Chuck/lst1-20rec.wav";
wn1.20 <- tuneR::normalize(tuneR::readWave(tmpfile));
wnm1.20 <- tuneR::mono(wn1.20, "left"); # str(wSpec);
wSpec <- tuneR::periodogram(wnm1.20, normalize=TRUE,

width=1024, overlap=512);
ff <- tuneR::FF(wSpec); # print(ff); str(ff)
notes <- tuneR::noteFromFF(ff, 440);� �

�
Unfortunately the main example for tuneR is unsuffi-

ciently commented. Comments usually come as a tautology
like “the function periodogram() produces a periodogram.”
Fortunately the author of [14] seems to follow the same
track17 without explicitly referencing the main tuneR exam-
ple but with more detailed explanations. At least he follows

17In Subsubection 13.1.2.2 tuneR Solutions, Subsection 13.1.2 Fundamental Fre-
quency, Section 13.1 Frequency Tracking, of [14]’s Chapter 13 Frequency and Energy
Tracking.

http://CRAN.R-project.org/package=tuneR
http://CRAN.R-project.org/package=seewave
http://CRAN.R-project.org/package=seewave
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/downsample.html
https://rdrr.io/cran/tuneR/man/extractWave.html
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/periodogram.html
https://rdrr.io/cran/tuneR/man/FF.html
http://CRAN.R-project.org/package=tuneR
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/readWave.html
https://rdrr.io/cran/tuneR/man/normalize.html
https://rdrr.io/cran/tuneR/man/MonoStereo.html
https://rdrr.io/cran/tuneR/man/periodogram.html
https://rdrr.io/cran/tuneR/man/FF.html
https://rdrr.io/cran/tuneR/man/noteFromFF.html
https://rdrr.io/cran/tuneR/man/tuneR.html
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/periodogram.html
http://CRAN.R-project.org/package=tuneR

22 7 AUDIO ILLUSTRATIONS

the line of applying periodogram(), FF(),18] noteFromFF(),
notenames(), melodyplot(), quantize(), and quantplot(). He
puts these tuneR functions into a dominant and fundamen-
tal frequency context’s comparison of

seewave’s dfreq() and fund()
phonTools’s pitchtrack()
soundgen’s analyze().19

7.1 Normalize and Mono

In the main tuneR example normalize() and mono() prepare the data
for periodogram(). What are these functions doing and to what degree
are they essential for the process?

normalize() turns the 16 bit integer values of the amplitude from a
range of ±32767 or ±(216−1), into a real-valued range of [−1,+1]. And
it centers the values which has the effect that the mean of all values is
leveled to zero. To make it comparable to the original wave I multiply
the result with 32760, the maximum value of input wave; see Table 4.
Is it needed to deliver a real -valued range for the subsequent functions?
For the [−1,+1] range? For amplification? Got a distant feeling that
it might be helpful for the amplitude envelope discussed in Section 7.5.
Just listillo guesses.� �
tmpfile <- "./iMuMy/Chuck/lst1-20rec.wav";
wv <- tuneR::readWave(tmpfile); # str(wv)
wn <- tuneR::normalize(wv);
rbind(wav=summary(wv@left),norm=round(32760*summary(wn@left)));� �

18The author calls FF() a wrapper of FFpure() and links it to the short-time
discrete Fourier transform (stdft) matrix. “A good way to understand how stdft
works is to use the interactive function dynspec(). The function computes a stdft
and displays the successive dfts. [. . .] The stdft is by essence a collection of suc-
cessive frequency spectra that are grouped into a single matrix which dimensions
are determined by the length N of the sound and the time index m that corre-
sponds to the size of the sliding window”; see the Subsection 11.1.1 Principle of
Section 11.1 Short-time Fourier Transformation in [14]’s Chapter 11 Spectrographic
Visualization. dynspec() is a seewave function which requires rpanel.

19The package offered a very detailed vignette about Acoustic Analysis, removed
at 2022-12-10 from the cran repository due to updated package size restrictions.
The reader might be lucky to still find it as a snapshot at mran.microsoft.com.

https://rdrr.io/cran/tuneR/man/periodogram.html
https://rdrr.io/cran/tuneR/man/FF.html
https://rdrr.io/cran/tuneR/man/noteFromFF.html
https://rdrr.io/cran/tuneR/man/notenames.html
https://rdrr.io/cran/tuneR/man/melodyplot.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/quantplot.html
http://CRAN.R-project.org/package=tuneR
http://CRAN.R-project.org/package=seewave
https://rdrr.io/cran/seewave/man/dfreq.html
https://rdrr.io/cran/seewave/man/fund.html
http://CRAN.R-project.org/package=phonTools
https://rdrr.io/cran/phonTools/man/pitchtrack.html
http://CRAN.R-project.org/package=soundgen
https://rdrr.io/cran/soundgen/man/analyze.html
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/normalize.html
https://rdrr.io/cran/tuneR/man/MonoStereo.html
https://rdrr.io/cran/tuneR/man/periodogram.html
https://rdrr.io/cran/tuneR/man/normalize.html
https://rdrr.io/cran/tuneR/man/FF.html
https://rdrr.io/cran/tuneR/man/FF.html
https://rdrr.io/cran/seewave/man/dynspec.html
https://rdrr.io/cran/seewave/man/dynspec.html
http://CRAN.R-project.org/package=seewave
http://CRAN.R-project.org/package=rpanel
https://mran.microsoft.com/snapshot/2020-12-31/web/packages/soundgen/vignettes/acoustic_analysis.html

7.2 Wave Spectrum Class 23

Table 4: Twinkle snippet: The quantiles of the original wave and its
normalize()’d version.

Min. 1st Qu. Median Mean 3rd Qu. Max.

wav -32751 -13625 113 16.62 13426 32760
norm -32760 -13638 96 0 13406 32736

The mono() function selects a specific channel. It will be more
useful after I put the bass line into a different channel than the melody,
which might deliver some ideas about a “master file”, equivalent to a
master tape. tuneR’s multi channel wave class WaveMC supports more
than two channels. MCnames() defines labels and names for 18 channels
derived from an unresolvable link to microsoft’s wav format in the
help file.20

7.2 Wave Spectrum Class

The attributes of periodogram() are impressive but I don’t really
know how to use them. The help page uses spectral density as a syn-
onym; doesn’t ring a bell either. For now I just see that periodogram()
produces a Wspec class which is required to feed into the next func-
tion FF() to produce a series of fundamental frequencies. Without deep
knowledge I just have a look at the structure of my recording’s Wspec
instance which I ingeniously call wSpec:

Formal class ’Wspec’ [package "tuneR"] with 13 slots
..@ freq : num [1:512] 43.1 86.1 129.2 172.3 215.3 ...
..@ spec :List of 774
.. ..$: num [1:512] 0.0783 0.3776 0.4763 0.0349 0.0111 ...
.. 773 similar lines
..@ kernel : NULL ..@ df : num 2
..@ taper : num 0 ..@ width : num 1024
..@ overlap : num 512 ..@ normalize: logi TRUE
..@ starts : num [1:774] 1 513 1025 1537 2049 ...
..@ stereo : logi FALSE ..@ samp.rate: int 44100

20See Default Channel Ordering in the Multiple channel audio data and WAVE
files entry at learn.microsoft.com for a working link, accessed 2023-01-28.

https://rdrr.io/cran/tuneR/man/normalize.html
https://rdrr.io/cran/tuneR/man/MonoStereo.html
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/MCnames.html
https://rdrr.io/cran/tuneR/man/periodogram.html
https://rdrr.io/cran/tuneR/man/periodogram.html
https://rdrr.io/cran/tuneR/man/FF.html
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653308(v=vs.85)#default-channel-ordering

24 7 AUDIO ILLUSTRATIONS

..@ variance : num [1:774] 0.0285 0.0304 0.0295 0.0281 ...

..@ energy : num [1:774] 43.5 43.9 43.8 43.4 44.1 ...

Shortly after producing this Wspec class tuneR’s main example men-
tions two graphical illustrations of it:

tuneR::image() a version of the graphics function image(). It
looks distantly related to a Gantt diagram; the help page calls it
spectrogram. According to the source file it uses wSpec@starts
for the x axis, wSpec@frequ for y, and wSpec@spec for the color.
tuneR::plot() a version of the base function plot(). It produces
something like a frequency spectrum by addressing one of 774
bins by a which parameter. According to the source file it uses
wSpec@freq for the x axis and wSpec@spec[[which]] for y.

The description at the corresponding plot-WspecMat help says
“plotting a spectrogram (image) of an object of class Wspec or
WspecMat. The usage, too. The tuneR related plot() is an S4 method
for signature WspecMat,missing and image() is for Wspec.” while the
details tell the user that “calling image() on a Wspec object converts it
to class WspecMat and calls the corresponding plot() function. Call-
ing plot() on a WspecMat object generates an image() with correct
annotated axes.” I find that confusing. Nevertheless I can apply the
illustrations to my Wspec instance wSpec. The code below turns wSpec
into Figure 3. Obviously it uses image().� �
par(mar=c(2,4,0.6,0)+0.1);
tuneR::image(wSpec, ylim=c(0, 500), xunit="time",

col=c(rep("#FFFFFF",10),rainbow(200)[0:134]));
col=seewave::spectro.colors(20));
s <- c(108,133,158,184); t <- s*9/774;
abline(v=t,lwd=0.4,lty="dashed");
text(t,355,paste0("wSpc(",s,") at ", round(t,2), "s"),

a=c(0.4,-0.45),cex=0.65,srt=90);� �
Introducing rep("#DDDDDD",10) at the start of my choice of colors

turns an otherwise red background to grey. This manipulation seems to
act like noise reduction. Using only the first 67% of the rainbow palette
makes it start at red, continue with yellow, green, cyan and end at blue.
Using rainbow(200)[134:0] would reverse the palette and begin with
deep blue. Anticipating the features of spectro() presented at the end of

http://CRAN.R-project.org/package=tuneR
https://rdrr.io/r/#graphics
https://rdrr.io/r/graphics/image.html
https://rdrr.io/cran/tuneR/man/plot-WspecMat.html
https://rdrr.io/cran/tuneR/src/R/plot-Wspec.R
https://rdrr.io/r/#base
https://rdrr.io/r/base/plot.html
https://rdrr.io/cran/tuneR/src/R/plot-Wspec.R
https://rdrr.io/cran/tuneR/man/plot-WspecMat.html
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/r/graphics/image.html
https://rdrr.io/cran/seewave/man/spectro.html

7.2 Wave Spectrum Class 25

Fig. 3: wSpec image. The unit of the x axis is seconds. The marked positions
are used for the generic plot() version of tuneR in Figure 4.

this section I could also choose the spectro.colors() palette built with
the hsv() function of grDevices. The colors are shown in the amplitude
legend of Figure 5.

In Figure 3 I marked some time spots to compare the Wspec illus-
trations to the plots for the fundamental frequencies. For comparison I
picked a boxplot() of the values used in Figure 2. For this view I skipped
the ramps. I extracted the corresponding regions manually from the ff
vector which is developed to the time series in Section 7.4 and plotted
in Section 5. See the code below and the left graph in Figure 4.� �
x <- boxplot(ts1.20[95:197], ts1.20[198:301],

ts1.20[302:404], ts1.20[405:490],
main="Fundamental Freqencies\nof the Twinkle Snippet");� �

A specialty of R’s boxplot() is its list of return values. The third line
of the first list element, the x$stats matrix, contains the medians of
the boxes. So I can use them for the horizontal lines, the text placement
and the text itself:� �
abline(h=x$stats[3,],lwd=0.4,lty="dashed");
text(c(2,1,1,3),x$stats[3,],paste(round(x$stats[3,],2), "Hz"),

a=c(0.5,-0.2),cex=0.95);� �
Basically the plots of my Wspec class wSpec at the chosen which’es

can be invoked by the command shown in the titles of the four right
graphs in Figure 4. The exact command for the first plot is

http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/seewave/man/spectro.colors.html
https://rdrr.io/r/grDevices/hsv.html
http://CRAN.R-project.org/package=grDevices
https://rdrr.io/r/graphics/boxplot.html
https://rdrr.io/r/graphics/boxplot.html

26 7 AUDIO ILLUSTRATIONS

Fig. 4: Left: the boxplot() of the fundamental frequencies without ramps.
The corresponding regions were extracted manually from the ff vector plot-
ted in Figure 2 of Section 5. – Right: wSpec plots at the dotted time spots
in Figure 3. The x axis units are Hz. These spots are correlated to the
leftmost boxplot.

� �
tuneR::plot(wSpec, xlim = c(30, 270), which = s[1],

main=paste0("plot(wSpec,w=",s[1],")"));� �
With the distinctive features from the item list of the two Wspec

illustrations plot() and image() I think I’m ready to make my first
steps into understanding the Wspec producing periodogram() and move
to seewave’s spectro() or the much more rewarding theoretical fields of
spectral and Fourier theory. The image in Figure 5 is made without
a Wspec class detour from the mono input wnm1.20; see Section 7. It
looks promising, but the parameters and the corresponding theory are
still challenging.� �
seewave::spectro(wnm1.20,flim=c(0,0.65));� �
7.3 Fundamental Frequency

Julius O. Smith [11] considers fundmental frequency as fundamental
knowledge and points to the illustrative textbook-like entry Recogniz-
ing the Length-Wavelength Relationship at physicsclassroom.com.21

21Subsection Recognizing the Length-Wavelength Relationship → Section Funda-
mental Frequency and Harmonics → Lesson 4 Resonance and Standing Waves in

https://rdrr.io/r/graphics/boxplot.html
https://rdrr.io/cran/tuneR/man/periodogram.html
http://CRAN.R-project.org/package=seewave
https://rdrr.io/cran/seewave/man/spectro.html
https://www.physicsclassroom.com/class/sound/Lesson-4/Fundamental-Frequency-and-Harmonics#firstharm
https://www.physicsclassroom.com/class/sound/Lesson-4/Fundamental-Frequency-and-Harmonics#firstharm

7.3 Fundamental Frequency 27

Fig. 5: seewave’s spectro() of the mono wave wnm1.20 from Section 7.

It treats the term fundamental frequency as the first harmonic of an
instrument. So, if I aim FF() at my wav file it selects the fundamental
frequency of the whole sound as if it was the sound of one instrument.

Something in this class is the source for the 774 frequencies in the re-
sulting numerical vector of the FF() function. The @spec list, @starts,
@variance, @energy? Could be interesting.22 I just assume that the
ff vector is a number of consecutive frequencies representing my wav
snippet.

Physics Tutorial ’s Chapter Sound Waves and Music at physicsclassroom.com.
22Apart from being confronted with psd and dft realms (see below) a possible

entry into the rabbit hole is Section 11.4 Functions of the Package tuneR in [14]’s
Chapter 11 Spectrographic Visualization, p. 321f: “The most important slot is the
slot @spec which contains the successive power spectrum densities (psd’s) orga-
nized in a list. [. . .] To get a display of the spectrogram, we need to extract the slot
@spec, to convert it into a matrix, to scale the data in [0, 1], to convert the data in
dB, and to use the function 2D-plot function image() to plot the transpose of the
matrix. Labeling the axes is a bit tricky, in particular for the time axis.” There’s
another entry at Subsection 10.1.1 Functions of the Package tuneR in 10.1 Fre-
quency Spectrum of [14]’s Chapter 10 Frequency, Quefrency, and Phase in Practice,
p.248f: “The function periodogram() of tuneR, which is based on spec.pgram()
from the R core package stats, computes the power spectral density (PSD) which
is the square of the frequency spectrum of the discrete Fourier transform dft. The
frequency spectrum is scaled by the sum of the dft values returning therefore a
probability mass function.”

http://CRAN.R-project.org/package=seewave
https://rdrr.io/cran/seewave/man/spectro.html
https://rdrr.io/cran/tuneR/man/FF.html
https://rdrr.io/cran/tuneR/man/FF.html
https://rdrr.io/r/graphics/image.html
https://rdrr.io/cran/tuneR/man/periodogram.html
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/r/stats/spec.pgram.html
https://rdrr.io/r/#stats

28 7 AUDIO ILLUSTRATIONS

7.4 Time Series

I choose another reasoning for the derivation of the vector ff. How
many samples do I need to identify the note lengths I’m looking for?
I can’t find an answer to this question without the knowledge about
turning pressure values into frequency information, i.e., the mystery of
the spectral density. But I can estimate the requirements for solving
this mistery by relating the note length to the sample rate. And then –
by varying the window length – I probably can discover some boundary
values. For a 44100Hz sampling rate the 1024 sample window of the
ff producing periodogram() takes

44100
samples
second

=
1024 samples

x
; → x =

1024 s
44100

≈ 23.22ms.

In a frame of 100 BPM, i.e., 100 quarters per minute, a quarter
takes 60 s/100 = 600ms, a quaver 300ms, a 16th 150ms, a 32th 75ms.
The window width of 23ms is about one third of a 32th, i.e. a triplet
64th.23 The number of samples for a 32th range of 75ms is

x

75ms
=

44100 samples
1000ms

; → x = 3307.5 samples.

For a 16th note it would be the next integer value of 6615 samples.
That fits for the Twinkle notes, the ramps would have a coarse profile.
With this estimation I could try to define a proper overlap for 6615
samples; without leaving the pattern of the musical beat. Anyway,
the window length in the periodogram() is restricted to 2n values with
positive integer n exponents. The function puts any other window size
to the next 2n step. With log2 6615 ≈ 12.7 that would be 213 = 8192.

Armed with this information I dare to proceed using the results of
FF() without knowing the internals. In the decorated twinkle case, ac-
cording to str(), the result is a numerical vector of 774 elements; see

23The question is what would be a serious resolution? That depends. For the
continuous up and down ramps it might have to be as small as possible, and for the
quaver notes a 16th resolution might suffice. But looking at the procedural data of
an up or down ramp we only need the start and end note, the ramping time, and
perhaps a ramping profile. The profile would describe the pattern to get from start
to end; linearly, sinusodially increasing, whatever. The glissando notation includes
this freedom of interpretation.

https://rdrr.io/cran/tuneR/man/periodogram.html
https://rdrr.io/cran/tuneR/man/periodogram.html
https://rdrr.io/cran/tuneR/man/FF.html
https://rdrr.io/r/utils/str.html

7.5 Smoothing 29

Section 7.2. The values and the function name tell me that they are
frequencies, but the time series information seems to be lost. Reimple-
menting this time information is a matter of� �
ts1.20 <- ts(ff, start=0, end=9, frequency=774/9);� �

I already used that time series for the construction of Figure 2 in
Section 5 and for the boxplot in Figure 4 of Section 7.2.

7.5 Smoothing

In the main tuneR example the melodyplot(), the quantplot(), and a
some kind of implied lilypond output are prepended by the smoother()
filter. For quantplot() and lilypond there’s also a quantization pre-
cursor.

For the next four subsections my mysterious notes vector of 774
elements derived with noteFromFF() from the fundamental frequencies
FF() of spectral windows periodogram() which are calculated from the
amplitude values of my chuck recording are processed by smoother()
to snotes

the next section shows the melodyplot()
Section 7.7 introduces quantize() and quantMerge() which are used
in the two subsequent sections24

Section 7.8 uses quantMerge() to construct lilypond note names
with an extract of the lilyinput() function.
Section 7.9 uses quantize() for the quantplot().

The function smoother() applies moving averages – the correspond-
ing help page talks about a “running median”. To run smoother() the
user needs the additional package pastecs which, according to its help
page, is aimed at “the analysis of space-time ecological series.” The
borrowed function is decmedian(), “a nonlinear filtering method used to
smooth, but also to segment a time series. The isolated peaks and pits
are leveraged by this method.”

Reasoning about the moving average of smoother() led me to Sub-
section 5.2.3 Smoothing in Section 5.2 Amplitude Envelope of [14]’s

24The main example of tuneR uses smoother()’ed snotes for the quantize()
input. But as far as I’ve seen the usage of notes yields the same result.

http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/melodyplot.html
https://rdrr.io/cran/tuneR/man/quantplot.html
https://rdrr.io/cran/tuneR/man/smoother.html
https://rdrr.io/cran/tuneR/man/quantplot.html
https://rdrr.io/cran/tuneR/man/noteFromFF.html
https://rdrr.io/cran/tuneR/man/FF.html
https://rdrr.io/cran/tuneR/man/periodogram.html
https://rdrr.io/cran/tuneR/man/smoother.html
https://rdrr.io/cran/tuneR/man/melodyplot.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/quantMerge.html
https://rdrr.io/cran/tuneR/man/quantMerge.html
https://rdrr.io/cran/tuneR/man/lilyinput.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/quantplot.html
https://rdrr.io/cran/tuneR/man/smoother.html
https://rdrr.io/cran/tuneR/man/smoother.html
http://CRAN.R-project.org/package=pastecs
https://rdrr.io/cran/pastecs/man/decmedian.html
https://rdrr.io/cran/tuneR/man/smoother.html
https://rdrr.io/cran/tuneR/man/tuneR.html
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/smoother.html
https://rdrr.io/cran/tuneR/man/quantize.html

30 7 AUDIO ILLUSTRATIONS

Chapter 5 Display of the Wave. It explains the process of a sliding
window and applies it to the concepts of moving averages, sums, and
kernels mediated by the parameters msmooth, ssmooth, and ksmooth of
the seewave function env(). The rabbit holes I discovered in the matter
of env() are

the difference between absolute and analytic[] amplitude en-
velopes controlled by the parameter envt
the kernel() function which feeds into ksmooth
the connection to a time and amplitude threshold detector called
timer()25 which includes the parameters of env().

So Ihave a faint idea of tuneR’s smoother() function, apply it for
melodyplot(), and observe its effect on the quantization methods. Per-
haps I can keep in mind that seewave’s env() could be a proper substi-
tute.� �
snotes <- tuneR::smoother(notes);� �
7.6 Melody Plot

The ts class from the preceding Section 7.4 delivered the time axis
shown in Figure 2. The result in the melody plot of Figure 6 should
be pretty much the same. in this plot the linear down slope at the end
turns into a curve. That’s because of the logarithmic nature, i.e., the
log12 relation, of notes and frequency. And the initial ramp doesn’t
have enough space on the graph to show bending. At least I can see
that the melodyplot() is an equivalent to my self made time series plot.
The interested reader might try to substitute snotes with notes to see
some tassels.� �
tuneR::melodyplot(wSpec, snotes, mar=c(2,4,0,4)+0.1);� �

25The timer() function is central to the 13-page section 8.3 Automatic Measure-
ments in [14]’s Chapter 8 Time-Amplitude Parametrisation. This is 13 pages about
looking for relevant signals in a sea of noise or silence just by applying a threshold.
the whole 30-page-chapter Comparison and Automatic Detection of the same book
treats pattern matching.

http://CRAN.R-project.org/package=seewave
https://rdrr.io/cran/seewave/man/env.html
https://rdrr.io/cran/seewave/man/env.html
https://rdrr.io/r/stats/kernel.html
https://rdrr.io/cran/seewave/man/timer.html
https://rdrr.io/cran/seewave/man/env.html
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/smoother.html
https://rdrr.io/cran/tuneR/man/melodyplot.html
http://CRAN.R-project.org/package=seewave
https://rdrr.io/cran/seewave/man/env.html
https://rdrr.io/cran/tuneR/man/melodyplot.html
https://rdrr.io/cran/seewave/man/timer.html

7.7 Note Quantization 31

Fig. 6: Melody plot

7.7 Note Quantization

In this section is based on statements from the help page of
quantize() and quantMerge(). According to the description both func-
tions “apply (static) quantization of notes in order to produce sheet
music by pressing the notes into bars.” Both read a notes vector of
integers such as returned by noteFromFF(); quantize() optionally con-
sumes an additional energy vector. The notes vector contains positve
and negative integer values centered about a zero note defined by a nor-
mative frequency value called diapason.26 As discovered in Section 3
noteFromFF() returns an integer valued semitone difference to the dia-
pason A3.

quantize() works with the parameters notes, energy, and parts.
It returns notes and energy counting parts elements.
quantMerge() responds to notes, minlength, barsize, and
bars. Its result is a data frame with the columns note, duration,
punctuation, and slur showing bars * barsize rows.

The first two lines of quantMerge() show its dependence on
quantize().� �
lengthunit <- bars * barsize;
notes <- quantize(notes, parts=lengthunit)$notes;� �

26Diapason is short for diapason normal correlated to the concert pitch.

https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/noteFromFF.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/noteFromFF.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/quantize.html

32 7 AUDIO ILLUSTRATIONS

With the for-loop below I can trial and error myself through the
parts interpretation of quantize().� �
p <- seq(2,50,16); #p <- c(2^(2:6));
for (i in p) print(tuneR::quantize(snotes, wSpec@energy, parts =
↪→i));� �

Same experimental setup for the combination of quantMerge()’s
minlength, barsize, and bar in order to produce something useful as
input for lilypond. The definition used in Section 7.8 is� �
qMnotes <- tuneR::quantMerge(notes=snotes, minlength=8, barsize=4,
↪→bar=8);� �

And the input for quantplot() demonstrated in Section 7.9 is based
on quantize() and uses the energy values.� �
qnotes <- tuneR::quantize(snotes, wSpec@energy, parts = 64);� �
7.8 Lilypond Output

Table 5 shows the note values prepared by quantMerge() and pro-
cessed by a function which I borrowed from the note-translation code27

of the function lilyinput().

Table 5: Output of the tuneR function quantMerge() processed by an ex-
tract of lilyinput(). The quantMerge() parameters minlength, barsize,
and bar are set to the combination 8-4-8.

c8 e8 f8 gis8 a,2 cis2 cis8 d4. d8 cis4. a’8
g’8 f’8 e’8 d’8 b8 gis8 e8 b,8 e,8 fis„8 gis„8

After prepending and appending a half note rest r2 and adding
some slurs28 I copy & paste the result into a lilypond template which
delivers Figure 7.

27Because of its length the code is not shown, but it’s part of this blog’s org file.
The dear reader may also look up the part in the lilyinput() function. Its the
part from the assignment of clef to the return value statement toene. I consider
this note decoder as the central part of this lilyinput() function.

28Some notes are split automatically in order to comply to the musical beat

https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/quantplot.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/lilyinput.html
http://CRAN.R-project.org/package=tuneR
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/lilyinput.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://bitbucket.org/StPjotr/hp/src/master/orgRoot/tools/klang.org
https://rdrr.io/cran/tuneR/man/lilyinput.html
https://rdrr.io/cran/tuneR/man/lilyinput.html

7.9 Quantplot 33

Fig. 7: lilypond output of the raw Listing1.20.ck in quaver resolution.

In the lilypond interpretation of the 16th resolution – see Figure
8 – the last bass note of the melody’s accompaniment is interpreted as
a half note even if it only takes 1.1 seconds; I manually split the result
cis2 to cis4.(cis16 cis). Suprisingly in both the 8th and the 16th
grid the second bass note shows an abnormal length which postpones
the subsequent notes. Fortunately I can visually pre-examine the phe-
nomenons of using even smaller quantize() parts by the illustration
with quantplot(); see Figure 9.

Fig. 8: The melody’s bass accompaniment in 16th resolution.

7.9 Quantplot

The output qnotes of quantize() with 64 parts – see Section 7.7
– is fed to quantplot(). I present the code and the graphical output of
function without further explanation. The reader may have collected
enough inspiration to explore the 27 parameters of quantplot() com-
bined the parametric food of quantize().� �
tuneR::quantplot(qnotes, expected=rep(c(0, -12), each=4),

mar=c(2,4,0,4)+0.1, bars=4)� �
structure. These breaks are then rebound with a slur. This slur provision is already
announced for the lilyinput() function.

https://github.com/ccrma/chuck/tree/master/examples/book/digital-artists/chapter1/Listing1.20.ck
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/quantplot.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/quantplot.html
https://rdrr.io/cran/tuneR/man/quantplot.html
https://rdrr.io/cran/tuneR/man/quantize.html
https://rdrr.io/cran/tuneR/man/lilyinput.html

34 8 WHAT’S MORE

Fig. 9: Quantplot without rests in 16th resolution.

8 What’s more

With these tools at hand I began to translate the modules of able-
ton live – the live devices including instruments, audio and midi
effects – into one view of sound synthesis. Another view is Peter Man-
ning’s Evolution of Sound Synthesis29. His “evolutional” sequence is, for
example, wavetable synthesis→ additive synthesis→ frequency modu-
lation→ physical modelling→ granular synthesis. And the next section
of this Manning reference, 3 Resources for Software-Based Sound Syn-
thesis, discusses plenty of tools for the tasks. The Chapter A History
of Music and Programming in the chuck PhD thesis [15] offers similar
insight. The thesis itself which promotes chuck as a “strongly-timed”
audio programming language with a time-based concurrent program-
ming model30 gives rise to the assumption that there’s something miss-
ing in the text based sound languages nyquist and supercollider.

My experience of the terminal execution of chuck scripts in pulse
audio installations of ubuntu and endeavoros is a hick up after

29That is the headline of the second section in Sound Synthesis Using Computers
[8].

30Section 1.3 The ChucKian approach in [15]’s Chapter 1 Introduction and Mo-
tivation, p.5.

35

about half a second of every listing I played.31 When I record the
script and play the resulting wav file with an audio player like vlc
there’s no problem. This might be an issue of my linux configuration.
Or perhaps I missed some warnings in the compilation feedback of
chuck. The chuck flag --blocking might help but it’s not available
in chuck versions ≥ 1.4.x. Any configuration of --bufsize didn’t affect
the hick up. I didn’t check --adaptive and I also didn’t try to run the
scripts in audicle.

Perhaps I’d get some hints from the entry Getting an ALSA program
(ChucK) to work with Pulseaudio? and one of its references Command
line multitrack audio looper for Linux?, both at superuser.com. Or
from a 2018’ phd work which expands on live coding and classifies
chuck’s processing mode as a

“style of intra-process communication [which] has been
adopted by many live-coding environments including
chuck, impromptu and fluxus. Being both effcient
and flexible, intra-process communication offers an attrac-
tive option for integrating live-coding languages with extant
low-level audio-visual frameworks – opengl, stk, core-
audio, quicktime, directx, alsa, jack, portaudio,
and portmidi to name a few.

There is however, a serious disadvantage with the tight cou-
pling of language with framework; the tight coupling of fail-
ure!”

— Section 3.1.2 Language and framework coupling of
Extempore: The design, implementation and application of

a cyber-physical programming language [12], p.47

The quote can be seen as a commercial for the extempore software,
or as incentive for new ideas about live coding.

Anyway my hick up experience gives rise to the suspicion that
nyquist or supercollider are at least worth trying. Or im-
promptu, fluxus, extempore? All these software is nothing but a

31I also checked this behavior in a real terminal of an ubuntu system, i.e., the ter-
minal which is usually available via C-M-F1 to C-M-F?, not the terminal emulations
of the graphical desktop.

https://superuser.com/questions/537030
https://superuser.com/questions/405910
https://github.com/digego/extempore

36 8 WHAT’S MORE

toolbox for working with sound. So I might be better off to discover the
gnu linux empire which embraces the unix philosophy of using small
and highly advanced programs which are maintainable? For example I
could employ mpc, the command-line client of the Music Player Dae-
mon mpd for a DJ scenario. The emacs multimedia system emms
supports it. But has emms access to the three crossfading related flags
crossfade, mixrampdb, and mixrampdelay? What about employing
SoX? Ecasound?

There are lots of programs, services, and devices which may add
to an individual tool set. unix command line programs and libraries,
their gui representatives, and wrappers in any coding language. Online
offers and services. Looks like the users are pushed into responsibilty for
their own actions. No wonder most of them decide for the proprietary
thread. I voted against integrated audio software like CuBase, Magix,
Rosegarden, Garageband, Muse, TuxGuitar, Frescobaldi. But I’m still
interested in discovering

Online platforms – Bandlab, Soundcloud, Funkwhale, mu-
sicBrainz (audio fingerprint, recording ids)

Command line players or synths – ffmpeg/ffplay/ffprobe, eca-
sound, sox, mpd. Melt? See the Melt article by Bruce Byfield at
linux-magazine.com.

Ip3 tagging – mp3tag → puddletag, exiftool (reading metadata),
mutagen (writing id3tag) → exFalso/quodLibet, musicBrainz →
picard,

Composition tools – ProChords, a framework of a usage database
instead of music theory for selecting chords.

Guitar effects – Looking up Guitar Effects Pedals [5]. Get in-
spiration from Guitar Tone [4] or Electric Guitar Science [7] and
then dive into Julius Smith’s online books to synthesize a Hendrix
sound.32

32Direct Link chosen from an overview of Sound Examples in one of his on-
line publications Physical Audio Signal Processing at www.dsprelated.com or at
ccrma.stanford.edu. Both example sections are pointing to wav and mp3 files at
ccrma.stanford.edu.

https://musicpd.org/doc/mpc/html/
http://www.musicpd.org/
https://www.linux-magazine.com/Issues/2018/206/Command-Line-Melt
http://ccrma.stanford.edu/~jos/pubs.html
http://ccrma.stanford.edu/~jos/mp3/ElectricGuitar.mp3
http://ccrma.stanford.edu/~jos/mp3/ElectricGuitar.mp3
https://ccrma.stanford.edu/~jos/pasp/Sound_Examples.html
http://www.dsprelated.com/dspbooks/pasp/
https://ccrma.stanford.edu/~jos/pasp/

37

lilypond’s extended notation scores for fingering, percussion,
fret diagrams – how to note the playing technique, of latin per-
cussion for example, and use it as input for a music program.

Streaming configured audio results as a mumble or mpd audio
session – for example a radio show or a podcast might be consid-
ered to be transferred to Worlds for Collaborative Social Audio
Programming ; see Section 7.2.2 in 7.2 Future Work of [15]’s Con-
clusion Chapter. Get hints from libmms, a library for download-
ing (streaming) media files using the mmst and mmsh protocols.

Electronic circuit simulation for sketching analogue modules dis-
cussed in Handmade Electronic Music: The Art of Hardware
Hacking [3] – mainly inspired by ngspice, based on spice, the
Simulation Program with Integrated Circuit Emphasis. The arch
linux user repository, for example, provides bridges to Spice3f5,
Ciber1b1, and Xspice. The Science of Electric Guitars and Gui-
tar Electronics [7] uses ngspice and Jimmie Cathey’s Schaum
textbook [2] provides spice scripts for basic electronics.

That are some pieces of some big picture. But with – the recorded
results of – chuck I first try the different forms of compositions from [6]
and explore the live sampling expansion LiSa of chuck’s sound buffer
handling33 to advance my recording skills; perhaps inspiring streaming
scenarios.

Even the first step can be a daunting task when I want to employ
lilypond notation to drive a chuck composition. The R package
tabr seems to deliver the tools for these bridges; see the initial vignette
Noteworthiness : “tabr provides a music notation syntax system rep-
resented in R code and a collection of music programming functions
for generating, manipulating, organizing and analyzing musical infor-
mation structures in R. While other packages focus on working with
acoustic data more generally, tabr provides a framework for creating
and working with musical data in a common music notation format.”

And I’m also confident that my experience with notator’s event
handling for sequencing will be a valuable source of inspiration. Or the

33Explained in 20 pages of Chapter 4 Sound files and sound manipulation of [6].

https://sourceforge.net/projects/libmms/
https://en.wikipedia.org/wiki/Ngspice
https://en.wikipedia.org/wiki/SPICE
http://CRAN.R-project.org/package=tabr
https://rdrr.io/cran/tabr/f/vignettes/tabr-prog-nw.Rmd
http://CRAN.R-project.org/package=tabr
http://CRAN.R-project.org/package=tabr

38 8 WHAT’S MORE

astonishing simplicity of notator’s transform form – see Figure 10 –
which is extensively discussed in the Manual [1], chapter 24, 3 Structure
of the Transform Window. Looks like retro? Hmm. Guess again.

Fig. 10: The transform form of notator.

I think the very first move is employing chuck to note the events
into a csv file. Or json for complex data like a glissando or a set or
variables for a sound or program change. I guess both, or the good
old database with normalized tables? Employing chuck should be the
fastest way to a piano roll.

�
I already put up an org mode file for all of tabr’s elabo-
rated vignettes. Just to understand the scope of the pack-
age. But I’m still undecided if all these tools are really
helpful. For they obscure a big deal of insight if used with-
out understanding lilypond. And lilypond in turn – for
me – is a hard nut to crack either. Even if I also worked
with its predecessors musictex and musixtex. So I think
my entry toolset presented in this blog has still a lot to
offer.

http://CRAN.R-project.org/package=tabr

39

Supplements of this blog entry: I provide the pdf here at
pjs.netlify.app and a reduced version of the org source at
bitbucket.org.

Thanks for reading. Comments at the @pjs@c.im instance at
mastodon.

9 Apx A – ChucK on Ubuntu and Arch

The online help for the installation of chuck offers installers
and source files for windows and macos. For linux systems
the help is reduced to the statement that the library libsndfile
(linked to www.mega-nerd.com) is somehow involved and that the
user should have gcc, lex, yacc, and make; see the release page at
chuck.cs.princeton.edu. On this release page the link which says
“access all versions here” also offers a cygwin version, and the most
recent manual.

2022-02-18, ubuntu 20.04.3 LTS: chuck-1.4.1.0 doesn’t install,
chuck-1.4.0.1 works, but shows some warnings; ubuntu itself
offers the installation of version 1.2.0.8.dfsg-1.5build1, same at
2022-11-20.

2022-12-04, chuck-1.4.1.1 released in June 2022. The release
page announces that the chucK-1.4.x.x versions are part of the
NumChucKs releases of chuck which allow embedding any
number of virtual chuck machines.

�

Satellite ccrma is an entire customized version of linux
that includes a number of applications for computer music
and physical computing, including chuck. — A hint from

Section Installing on Ubuntu Linux in [6]’s Appendix A
/Installing ChucK and miniAudicle/

https://bitbucket.org/StPjotr/hp/src/master/orgRoot/tools/klang.org
http://www.mega-nerd.com/libsndfile/
https://chuck.cs.princeton.edu/release/
https://chuck.cs.princeton.edu/release/files/
https://chuck.cs.princeton.edu/release/
https://chuck.cs.princeton.edu/release/
https://ccrma.stanford.edu/~eberdahl/satellite/

40 9 APX A – CHUCK ON UBUNTU AND ARCH

9.1 Ubuntu

The section about the ubuntu installation in [6]’s Appendix also
begins with the statement that on linux, chuck and miniaudicle are
compiled from source code, but it specifies the additional programs and
libraries which have to be included. The short form of the preparation
is the command line expression� �
sudo apt-get install make gcc g++ bison flex libasound2-dev
↪→libsndfile1-dev libqt4-dev libqscintilla2-dev libpulse-dev� �

Another approach in ubuntu is to engage the synaptic package
manager and process each one of the libraries and programs. They
may be installed already. Check, e.g., which make gcc g++ at the
command line of the os shell. I prefer using Sys.which() within an r
source code block to have the answer available in the current document.
I can see from the answer, that all the compilers are installed already
and accessible at /usr/bin.� �
Sys.which(c("make", "gcc", "g++", "bison", "flex"))� �

For checking the other libraries the user can chose between at least
two procedures.

1. The first one is kind of a guess work, because the names of the
packages containing the code libraries are different in linux fla-
vors, like the main distributors arch, debian, redhat, or suse.
The bash command ldconfig configures dynamic linker run-
time bindings. In linux dynamically linked libraries are called
shared objects. With the -p flag set ldconfig prints the lists of
directories and candidate libraries stored in the current cache. In
this context I found the unix.stackexchange.com entry How Do
Shared Object Numbers Work helpful.� �
ldconfig -p | grep "libasound"� �

2. The second one is from askubuntu.com’s entry How to find loca-
tion of installed library. The output of dpkg -L is very long so
I also piped it into grep and edited the result by cutting some
example files.

https://rdrr.io/r/base/Sys.which.html
https://unix.stackexchange.com/questions/475
https://askubuntu.com/questions/115500

9.2 Endeavor OS – Arch 41� �
dpkg -L "libasound2-dev" | grep "libasound"� �
/usr/share/doc/libasound2-dev
/usr/share/doc/libasound2-dev/copyright
/usr/share/doc/libasound2-dev/examples
/usr/share/doc/libasound2-dev/examples/audio_time.c
...
...
/usr/share/doc/libasound2-dev/examples/timer.c
/usr/share/doc/libasound2-dev/examples/user-ctl-element-set.c
/usr/lib/x86_64-linux-gnu/libasound.so
/usr/share/doc/libasound2-dev/changelog.Debian.gz

9.2 Endeavor OS – Arch

As for ubuntu I can check for the installed compiler libraries, e.g.,
which make gcc g++. And use the bash command ldconfig for the
run-time bindings. In arch I add the usage of pacman -Ss for finding
libasound, libsndfile, libpulse, and qscintilla-qt4 connections;
see Section Querying Package Databases of the archwiki entry about
pacman at wiki.archlinux.org. There’s probably a similar flag or
option for debian’s dpkg command. One of the pacman wrappers
for arch’s user repository aur is yay. Wrappers are a subcategory of
aur helpers; “Pacman only handles updates for pre-built packages in its
repositories. aur packages are redistributed in form of pkgbuild’s and
need an aur helper to automate the rebuild process.” For my research
expanded the ldconfig-grep pipe from the ubuntu investigation with� �
pacman -Ss libpulse
yay -Ss libsndfile� �

In 2021-09 searching for chuck on arch delivers
chuck 1.4.1.0-1 2021-07-29, dependence jack2, which in turn de-
pends on about 20 packages. This explains the installation failure
at ubuntu.

While the arch user repository aur provides three packages with
the gcc-libs (. . .) and libsndfile dependencies, last updated at 2020-10-

https://wiki.archlinux.org/title/Pacman#Querying_package_databases
https://wiki.archlinux.org/title/Pacman
https://wiki.archlinux.org/title/AUR_Helpers#Pacman_wrappers
https://wiki.archlinux.org/title/AUR_Helpers
https://wiki.archlinux.org/title/PKGBUILD
https://archlinux.org/packages/community/x86_64/chuck/

42 9 APX A – CHUCK ON UBUNTU AND ARCH

05: chuck-alsa, chuck-jack, and chuck-pulse, all in version 1.4.0.1-
1.

Additional aur packages for chuck are
chugins-git depending on chuck, i.e., the alsa, jack, or pulse
versions above, and git
mini-audicle depending on libpulse, libsndfile, qscintilla-qt4
(ghost-deps-meta), and chuck (alsa, jack, pulse) (optional) – for
documentation and command line interface

The arch linux dependencies of the chuck installation libraries:
libasound2-dev → alsa-lib, 2021-06-14 - 1.2.5.1-3, provides
libasound.so=2-64, libatopology.so=2-64
libsndfile1-dev → libsndfile 2021-02-04 - 1.0.31-1, provides
libsndfile.so=1-64, otionally depending on alsa-lib
libqt4-dev and libqscintilla2-dev → required by mini-audicle, the
qscintilla-qt4 entry of the mini-audicle dependencies above was
linked to a ghost-deps-meta until 2021. It was a “metapkg
for cleaning the AUR, provide no longer existing packages for
finding pkgbuilds that need a fix” and provided the qscintilla-
qt4 related packages python-qscintilla-qt4, python-qscintilla-qt4-
common, python2-qscintilla-qt4, and qscintilla-qt4.
libpulse-dev → required by mini-audicle, libpulse and a no-
systemd version of libpulse.

Mission accomplished. Now I know that I can skip qscintilla-qt4
for my purposes.

9.3 Compilation

I only use the command line invocation of audio scripts and I’m
editing these scripts with emacs. For this I have to download and
unpack chuck following the sequence website → Download link →
source in the linux category. The download of miniAudicle is just for
to check, what libraries are for the audicle and if it works. For now I’m
writing documented scripts in org mode and I use the terminal or the
emacs shell buffer with chuck’s command line functionality. There
is also a chuck shell command line interface, kind of half way to the
audicle gui.

At September 2021 the arch package used 1.4.1.0 from 2021-06-25,

https://aur.archlinux.org/packages/chugins-git/
https://aur.archlinux.org/packages/mini-audicle/
https://archlinux.org/packages/extra/x86_64/alsa-lib/
https://archlinux.org/packages/extra/x86_64/libsndfile/
https://archlinux.org/packages/extra/x86_64/libpulse/
https://aur.archlinux.org/packages/libpulse-nosystemd-git/
http://chuck.stanford.edu
http://chuck.stanford.edu/release/
http://audicle.cs.princeton.edu/mini/linux/

9.3 Compilation 43

the aur packages chuck-1.4.0.1 from 2020-04-15. Remember, at 2022-
12-04 ubuntu still offers the 1.2.0.8 version, but it takes care of the
libraries. For installation from source the tar commands below prepare
for the compilation.� �
tar xzf chuck-W.X.Y.Z.tgz
tar xzf miniAudicle-A.B.C.tgz� �

where W.X.Y.Z and A.B.C match the current version numbers. Af-
ter unpacking the user navigates to the chuck src directory of the
unpacked folder system and enters the command to start the build
procedure� �
cd chuck-W.X.Y.Z/src
make linux-pulse� �

On my system make linux-alsa also works, but make linux-jack
terminates with the message� �
RtAudio/RtAudio.cpp:1910:10: fatal error: jack/jack.h: No such file
or directory #include <jack/jack.h> ^~~~~~~~~~~~~ compilation
terminated. makefile:153: recipe for target ’RtAudio/RtAudio.o’
failed make: *** [RtAudio/RtAudio.o] Error 1� �

Perhaps a missing jack-anything-dev library; see the RtAudio
header and cpp files in RtAudio folder at chuck.cs.princeton.edu.
The make process will, again, take some time, because all of the source
code files are compiled into the single chuck program. When the make
command completes, the last step is the admin job of making the com-
piled program chuck globally available.� �
sudo make install� �

I guess I could also use chuck without the sudo installer and call
chuck from the installation folder. The command chuck --version
checks the availability of chuck. I, again, process the response with r,
this time to get rid of the leading and the trailing empty lines. Looks
cumbersome, but I can control it better than the bash source code en-
vironment in org mode. There’s an R pipe() command which proba-
bly is more convenient; it’s sparsely documented but the corresponding
connections help offers a couple of examples to learn from.

https://chuck.cs.princeton.edu/release/files/examples/chuck-embed/host/RtAudio/
https://rdrr.io/r/base/connections.html

44 10 APX B – ORG MODE SCRIPTING OF CHUCK� �
bra <- "chuck --version"; pipe <- ">";
ket <- "2>&1"; out1 <- tempfile();
rv <- system(paste(bra, pipe, out1, ket))
paste(readLines(out1)[2:5],collapse="\n")� �
chuck version: 1.4.0.1 (numchucks)

linux (pulse) : 64-bit
http://chuck.cs.princeton.edu/
http://chuck.stanford.edu/

10 Apx B – Org Mode Scripting of ChucK

The org mode source code for starting a single chuck process
(shred) in the emacs buffer looks like� �
#+header: :noeval
#+begin_src bash :exports none :results none
chuck iCkBkEx/chapter1/Listing1.20.ck

#+end_src� �
I’m starting the script by disconnecting34 the :noeval header from

the source code, i.e., arming the code, and then evaluating it with C-c
C-c. To stop the script I use C-g.

�
I once happended to notice a missing up-beat glissando
while playing the script. But I couldn’t reproduce the error
on the next restart. I remember that the usage of vlc often
leads to awkward behavior of the linux audio system when
switching to another program. The PhD [15] only mentions
internal latency problems of a sound calculation that takes
longer than playing.35.

34Connecting the #+header: after playing is a good habit for avoiding the
org-lint message “orphaned header argument,” but I didn’t hear the code exe-
cuted at any export without the :noeval header. Well, :exports and :results
are both set to none; see the org Manual’s Section Evaluating Code Blocks for
their effect on evaluation.

35See the “two points should be noted” in Subsection 3.4.3 ChucK Virtual Ma-
chine + Shreduler, Section 3.4 System Design and Implementation of [15]’s ChucK
Chapter, p.78.

org::Evaluating Code Blocks

45

Another mode for working with chuck code from within an org file
is tangling.36 I demonstrate this feature with some short code example
from the sidebox Chuck is a real programming language37 in [6]. Its
realization as org mode source code block is� �
#+begin_src chuck :tangle ../iMuMy/Chuck/lst1p22.ck :noeval
Impulse imp => ResonZ filt => NRev rev => dac;
0.04 => rev.mix;
100.0 => filt.Q => filt.gain;
while (1) {

Std.mtof(Math.random2(60,84)) => filt.freq;
1.0 => imp.next;
100::ms => now; }

#+end_src� �
The default way to tangle this block would be arranged with the

header argument :tangle yes. This argument in the a code block’s
header of the file xx.org copies the code to xx.chuck; changing
#+begin_src chuck to #+begin_src ck leads to xx.ck; no major-
mode hacking.38 For more than one blocks in an org file with the same
target file the argument :padline controls empty line insertion between
the source blocks. Permissions for the file are set like :tangle-mode
(identity #o755). After tangling with an explicitly given file name,
like show in the code above, the script can be processed39 with the
bash command� �
chuck ../iMuMy/Chuck/lst1p22.ck� �

36See Section Extracting Source Code of the org Manual or the docstring of
org-babel-tangle, shortcut C-c C-v t.

37The sidebox is part of Section 1.2.3 Now let’s make music, Section 1.2 Your
first ChucK programs of [6]’s first Chapter Basics: sound, waves, and ChucK pro-
gramming, p.22. The purpose of the sidebox is the demonstration of a short loop
to create an infinite number of sounds in contrast to the tedious task of explicitly
creating four Twinkle notes in Listing1.2.ck.

38Usage of :comments will involve more configurational effort, because the default
comment markup probably won’t fit for chuck code. The argument :comments
org transfers parts of the org document to the code file, while :comments link
inserts backlinks in the code file to the org file.

39In chuck parleur: the shred can be sporked to the vm.

org::Extracting Source Code
https://github.com/ccrma/chuck/tree/master/examples/book/digital-artists/chapter1/Listing1.2.ck

46 10 APX B – ORG MODE SCRIPTING OF CHUCK

Feedback from Practice
There’s a 2004’ chuck mode for emacs once linked at a Prince-
ton Wiki. This major mode worked well for code highlighting; the
executive part was discussed in comments and worked just for the
chuck --add feature; I have to kill it explicitly, probably because I
don’t understand the processes. And there’s a lot to know, begin-
ning with the linux audio system and process control. As of 2018
there’s a fork called chuck-mode with three elisp scripts chuck-core
→ chuck-console → chuck-mode at github.

The architecture of chuck depends on kind of a client server
model. One shell provides the embracinag virtual machine which
is initialized by chuck --loop. Another shell is used for corre-
spondence, while the feedback is presented at the server shell. It
might be hard to provide for the corresponding control structures
in emacs. For example the function run-chuck for starting the
virtual machine is is not activated by default. The comment of the
2004 chuck-mode author: “ChucK as an internal listener does not
work well. Run it externally and control it internally.”

The audicle is designed to organize these matters. But I
don’t want to be gui’ded. That’s why I had a hard timea getting
confidential about using the software. But I’m curious about the
chuck’s potential. It might be capable of concurrently controlling
all kind of processes; sound design, musical composition, theatri-
cal tonmeister processes, movie scoring, but also sonification tasks.
With the control of the operating system’s interfaces this can be
expanded to any process control task; see the wikipedia entry
about concurrency.

aTook me some time to see the SndBuf’s dependence on linux’s 48 kHz
default. For access to external wav files I have to reduce the sampling rate with
chuck –srate44100, not –srate:44100 or –srate(44100) in commands
of the client terminal. I noticed that while referring to wav snippets located
by audacity. With the linux default chuck couldn’t find these pieces using
44.1 kHz audacity’s sample locators.

https://github.com/jintwo/chuck-mode
https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://chuck.cs.princeton.edu/doc/program/ugen_full.html#sndbuf

47

11 Apx C – ChucK Sources

imho the book Programming for Musicians and Digital Artists Cre-
ating Music with Chuck [6] offers the most comprehensive and vivid
approach for the first contact with chuck. Unfortunately its dis-
tribution as a $30 book doesn’t meet the requirements of free soft-
ware → free documentation, unless the authors wouldn’t consider
their book as documentation. In 2021 the publisher offered the free
chapters 0 Introduction, 3 Arrays , and 6 UGens at manning.com,40

while the program page chuck.cs.princeton.edu links to an ama-
zon dp url. The examples of this book are provided in the
directory examples/book/digital-artists of the source zip or tar

chuck-1.X.Y.Z. After installation I found it in the folder above at
/usr/share/doc/chuck. It’s also mirrored at github. For free docu-

mentation the dear reader may turn to

the Web pages at Princeton and Stanford,
the Manual for the 1.3.x.x versions from 2007, 191 pages, linked
at the tutorial page, other Manual versions can be extracted from
the previous versions at the release page, probably version 1.2.0.8,
2004, with 159 pages.
the PhD thesis, connected at the language section of the docu-
mentation’s root page,
A chuck archive.flossmanual pointing at lick which is a github
“shared repository for various bits of reusable chuck code.”
most articles from Ge Wang’s publication page linked at
chuck.cs.princeton.edu, and
some of the Princeton SoundLab publications page which was
maintained until 2010.

The other examples are planted at a structured example page.
It’s structure may be interpreted as a parallel view-of or approach-to
chuck programming.

40In 2023-02 the visitor gets a time window for providing an email address.

https://www.gnu.org/philosophy/free-doc.html
https://www.manning.com/books/programming-for-musicians-and-digital-artists
https://www.manning.com/books/programming-for-musicians-and-digital-artists
https://livebook.manning.com/book/programming-for-musicians-and-digital-artists/chapter-0
https://livebook.manning.com/book/programming-for-musicians-and-digital-artists/chapter-3
https://livebook.manning.com/book/programming-for-musicians-and-digital-artists/chapter-6
https://github.com/ccrma/chuck/tree/master/examples/book/digital-artists
https://chuck.cs.princeton.edu
https://ccrma.stanford.edu/~spencer/ckdoc
https://chuck.cs.princeton.edu/doc/learn
https://chuck.cs.princeton.edu/release/
https://www.cs.princeton.edu/%7Egewang/thesis.pdf
https://chuck.cs.princeton.edu/doc
http://write.flossmanuals.net/chuck
https://github.com/heuermh/lick
http://ccrma.stanford.edu/~ge/publish/
http://soundlab.cs.princeton.edu/publications
https://chuck.cs.princeton.edu/doc/examples/

48 REFERENCES

References

[1] C-Lab, Hamburg. Notator SL, version 3.1 edition.

[2] Jimmie J. Cathey. Electronic Devices and Circuits. Schaum’s Outline. McGraw
Hill, 2011.

[3] Nicolas Collins. Handmade Electronic Music: The Art of Hardware Hacking.
Routledge, 2009.

[4] Mitch Gallagher. Guitar Tone. Cengage Learning, 2nd edition, 2012.

[5] Dave Hunter. Guitar Effects Pedals. Backbeat Books, 2nd edition, 2013. 1st
edition 2004.

[6] Ajay Kapur, Perry Cook, Spencer Salazar, and Ge Wang. Programming for
Musicians and Digital Artists. Manning Publications, 2015.

[7] Jarmo Lähdevaara. The Science of Electric Guitars and Guitar Electronics.
Books on Demand, 2012.

[8] Peter Manning. Sound synthesis using computers. In Roger T. Dean, edi-
tor, The Oxford Handbook Of Computer Music, text 4, pages 085–105. Oxford
University Press, Inc., 2009.

[9] Max V. Mathews, Joan E. Miller, F. R. Moore, John R. Pierce, and J. C.
Risset. The Technology of Computer Music. The MIT Press, 1969.

[10] Zbigniew W. Raś and Alicja A. Wieczorkowska, editors. Advances in Music
Information Retrieval. Springer Berlin Heidelberg, 2010.

[11] III. Smith, Julius O. Physical Audio Signal Processing. W3K Publishing,
http://www.w3k.org/books/, 2010.

[12] Andrew Carl Sorensen. Extempore: The design, implementation and applica-
tion of a cyber-physical programming language. PhD thesis, Australian Na-
tional University, 2018.

[13] S. S. Stevens, J. Volkmann, and E. B. Newman. A scale for the measurement
of the psychological magnitude pitch. J Acoust Soc Am, 8:185–190, 1937.

[14] Jérôme Sueur. Sound Analysis and Synthesis with R. Use R! Springer, 2018.

[15] Ge Wang. The ChucK Audio Programming Language. PhD thesis, Princeton
University, 2008.

[16] E. Zwicker. Subdivision of the audible frequency range into critical bands
(frequenzgruppen). J Acoust Soc Am, 33(2):248, 1961.

	I Check Twinkle ChucK
	Two Twinkle Bars
	Putting up a Table
	Getting Note Names
	Building the Score
	Frequency-versus-Time Graph
	Recording ChucK to WAV
	Audio Illustrations
	Normalize and Mono
	Wave Spectrum Class
	Fundamental Frequency
	Time Series
	Smoothing
	Melody Plot
	Note Quantization
	Lilypond Output
	Quantplot

	What's more
	Apx A – ChucK on Ubuntu and Arch
	Ubuntu
	Endeavor OS – Arch
	Compilation

	Apx B – Org Mode Scripting of ChucK
	Apx C – ChucK Sources

